• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 2
  • 2
  • Tagged with
  • 32
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex

Tao, Shasha, Liu, Pengfei, Luo, Gang, Rojo de la Vega, Montserrat, Chen, Heping, Wu, Tongde, Tillotson, Joseph, Chapman, Eli, Zhang, Donna D. 15 April 2017 (has links)
Activation of the stress-responsive transcription factor NRF2 is the major line of defense to combat oxidative or electrophilic insults. Under basal conditions, NRF2 is continuously ubiquitylated by the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex and is targeted to the proteasome for degradation ( the canonical mechanism). However, the path from the CUL3 complex to ultimate proteasomal degradation was previously unknown. p97 is a ubiquitin-targeted ATP-dependent segregase that extracts ubiquitylated client proteins from membranes, protein complexes, or chromatin and has an essential role in autophagy and the ubiquitin proteasome system ( UPS). In this study, we show that p97 negatively regulates NRF2 through the canonical pathway by extracting ubiquitylated NRF2 from the KEAP1-CUL3 E3 complex, with the aid of the heterodimeric cofactor UFD1/NPL4 and the UBA-UBX containing protein UBXN7, for efficient proteasomal degradation. Given the role of NRF2 in chemoresistance and the surging interest in p97 inhibitors to treat cancers, our results indicate that dual p97/NRF2 inhibitors may offer a more potent and long-term avenue of p97-targeted treatment.
12

In vitro reconstitution of the ubiquitylation and disassembly of the eukaryotic replisome

Mukherjee, Progya January 2018 (has links)
Maintenance of genomic integrity is dependent on the duplication of chromosomes, only once per cell cycle. Highly conserved mechanisms for the regulation of chromosome replication exists to ensure that the genome is copied only once. The Cdc45-MCM-GINS (CMG) DNA helicase which is the core of the eukaryotic replication complex, has been shown to be extensively regulated by post translational modifications, during its assembly. Therefore, it is not inconceivable that the process to unload the replication complex would also be a conserved and regulated process. In 2014, our lab discovered that the CMG complex undergoes post-translational modification in the form of ubiquitylation on one of the subunits of CMG, leading to its disassembly from the chromatin. Though the main players in the disassembly of CMG were known, viz the E3 ligase SCFDia2 and segregase Cdc48, very little was known about the mechanism of CMG disassembly. In the process of learning more about the disassembly of the replicative helicase from chromatin, I reconstituted the ubiquitylation of CMG and thereafter the disassembly of CMG helicase in vitro. My work resulting in the reconstitution of CMG disassembly in vitro is the first example of the disassembly of a multi-subunit physiological substrate of Cdc48. Though CMG is ubiquitylated in yeast extracts in vitro, it does not lead to its disassembly and therefore led me to find conditions necessary for the efficient ubiquitylation of CMG. I have further shown that purifying the E3 ligase associated CMG can be efficiently ubiquitylated in a semi-reconstituted system consisting of purified factors, necessary for the ubiquitylation of substrate. I investigated whether this efficiently ubiquitylated CMG can be disassembled by purified Cdc48 and associated co-factor Ufd1/Npl4 in vitro and found that disassembly is dependent on K48 linked poly-ubiquitylation of CMG. I have found that the reconstituted poly-ubiquitylation of CMG is restricted to the Mcm7 subunit of CMG, recapitulating the ubiquitylation of CMG in vivo, and my data points out that there are multiple sites of ubiquitylation on Mcm7. Through this work, I have also found that ubiquitylated Mcm7 no longer associates with the rest of the CMG components after disassembly of CMG. My assays and findings, open the door towards dissecting the molecular mechanism of the disassembly of CMG in greater detail.
13

Organizing the Ubiquitin-dependent Response to DNA Double-Strand Breaks

Panier, Stephanie 14 January 2014 (has links)
DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. To protect genomic integrity and ensure cellular homeostasis, cells initiate a complex signaling-based response that activates cell cycle checkpoints, coordinates DNA repair, regulates gene expression and, if necessary, induces apoptosis. The spatio-temporal control of this signaling pathway relies on a large number of post-translational modifications, including phosphorylation and regulatory ubiquitylation. In this thesis, I describe the discovery and characterization of the E3 ubiquitin ligase RNF168, which cooperates with the upstream E3 ubiquitin ligase RNF8 to form a cascade of regulatory ubiquitylation at damaged chromatin. One of the main functions of RNF8/RNF168-dependent chromatin ubiquitylation is to generate a molecular landing platform for the ubiquitin-dependent accumulation of checkpoint and DNA repair proteins such as 53BP1, the breast-cancer associated protein BRCA1 and the RNF168-paralog RNF169. I present evidence that the hierarchical recruitment of these proteins to DSB sites is, in large part, organized through the use of tandem protein interaction modules. These modules are composed of a ubiquitin-binding domain and an adjacent targeting motif called LRM, which specifies the recognition of RNF8- and RNF168-ubiquitylation substrates at damaged chromatin. I conclude that the LRM-based selection of ligands is a parsimonious means to build a highly discrete ubiquitin-based signaling pathway such as the chromatin-based response to DSBs. Collectively, my results indicate that RNF168-mediated chromatin ubiquitylation is critical for the physiological response to DSBs in human cells. The importance of the ubiquitin-based response to DSBs is underscored by the finding that RIDDLE syndrome, an immunodeficiency and radiosensitivity disorder, is caused by mutations in the RNF168 gene.
14

Organizing the Ubiquitin-dependent Response to DNA Double-Strand Breaks

Panier, Stephanie 14 January 2014 (has links)
DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. To protect genomic integrity and ensure cellular homeostasis, cells initiate a complex signaling-based response that activates cell cycle checkpoints, coordinates DNA repair, regulates gene expression and, if necessary, induces apoptosis. The spatio-temporal control of this signaling pathway relies on a large number of post-translational modifications, including phosphorylation and regulatory ubiquitylation. In this thesis, I describe the discovery and characterization of the E3 ubiquitin ligase RNF168, which cooperates with the upstream E3 ubiquitin ligase RNF8 to form a cascade of regulatory ubiquitylation at damaged chromatin. One of the main functions of RNF8/RNF168-dependent chromatin ubiquitylation is to generate a molecular landing platform for the ubiquitin-dependent accumulation of checkpoint and DNA repair proteins such as 53BP1, the breast-cancer associated protein BRCA1 and the RNF168-paralog RNF169. I present evidence that the hierarchical recruitment of these proteins to DSB sites is, in large part, organized through the use of tandem protein interaction modules. These modules are composed of a ubiquitin-binding domain and an adjacent targeting motif called LRM, which specifies the recognition of RNF8- and RNF168-ubiquitylation substrates at damaged chromatin. I conclude that the LRM-based selection of ligands is a parsimonious means to build a highly discrete ubiquitin-based signaling pathway such as the chromatin-based response to DSBs. Collectively, my results indicate that RNF168-mediated chromatin ubiquitylation is critical for the physiological response to DSBs in human cells. The importance of the ubiquitin-based response to DSBs is underscored by the finding that RIDDLE syndrome, an immunodeficiency and radiosensitivity disorder, is caused by mutations in the RNF168 gene.
15

Insights into the recruitment of BRCA1 to double strand DNA breaks

Campbell, Stephen J. Unknown Date
No description available.
16

Chromatin affinity purification coupled with mass spectrometry indetifies novel histone ubiquitylation interactors

David, Stefan-Sebastian 16 April 2018 (has links)
No description available.
17

Caractérisation des processus d'ubiquitination régulant la protéine Themis durant le développement des lymphocytes T / T cells, ubiquitylation, T cell signaling, thymic selection

Garreau, Anne 04 April 2017 (has links)
Themis est une protéine de signalisation des récepteurs des lymphocytes T (TCR) essentielle pour la sélection positive des cellules T. La fonction moléculaire de Themis a été controversée mais de récentes études suggèrent qu'il est un régulateur positif des voies de signalisation des TCR. Nous avons montré dans une étude préliminaire que Themis interagit avec des déubiquitinases et qu'il est ubiquitiné dans les thymocytes. L'objectif de ma thèse était de caractériser les mécanismes moléculaires qui régulent l'ubiquitination de Themis et de déterminer si ces processus affectent la fonction de Themis durant le développement des lymphocytes T. Nous avons montré que si l'expression des ARNm codant pour Themis diminue dans les stades précoces de la sélection positive, son expression protéique est parallèlement augmentée, suggérant une stabilisation de Themis par des modifications post-traductionnelles durant cette étape. Nous avons montré que la déubiquitinase USP9X déubiquitine Themis pour stabiliser son expression durant la stimulation des TCR. L'ensemble de nos résultats proposent qu'USP9X soit activé durant la stimulation des TCR grâce à son recrutement dans les complexes proximaux des TCR par l'intermédiaire de l'adaptateur Grb2 et Themis, entrainant la stabilisation de l'expression de Themis. Nous pensons que ce mécanisme est important pour maintenir l'expression de Themis durant la sélection positive afin de favoriser l'induction d'un signal des TCR soutenu, requis pour l'efficacité de ce processus. / The protein Themis is a new actor of the T cell receptor (TCR) signaling essential for the positive selection of T cells. The molecular function of Themis has been controversial but recent findings suggest that it acts as positive regulator of TCR signaling. We demonstrated in an initial research that Themis interacts with deubiquitylases and is covalently associated to ubiquitin chains in thymocytes. The aim of my PhD project was to characterize the molecular process that regulates the ubiquitination of Themis and to investigate how these post-translational modifications affect Themis function during T cell development. We demonstrated that Themis mRNA expression is progressively decreased after positive selection whereas Themis protein expression is enhanced at the early stages of positive selection, suggesting that Themis is stabilized by post-translational modifications during positive selection. We demonstrated that USP9X allows the deubiquitination of Themis and its stabilization following TCR engagement. Ours results suggest that USP9X is activated during TCR engagement following its recruitment to proximal signaling complexes through Grb2 and Themis, leading to the deubiquitination and stabilization of Themis expression. We believe that this mechanism is important to sustain Themis expression during positive selection and to promote durable TCR signals required for the efficiency of this process.
18

Dveloppement de nouvelles mthodes d'identification des sites de SUMOylation par protéomique

Lamoliatte, Frederic 08 1900 (has links)
La régulation des protéines par les modifications post-traductionnelles (PTMs) est un événement clé dans le maintien des fonctions biologiques de la cellule. Parmi elles, on retrouve les modifications causées par une famille de molécules appelées Ubiquitin Like Modifiers (UBls), incluant l’ubiquitination, la neddylation ou encore la SUMOylation. Au contraire des modifications classiques faisant intervenir des petits groupements chimiques, telles que la phosphorylation ou l’acétylation, les UBls sont eux-mêmes des protéines se greffant sur le groupement amine en position e des lysines des protéines ciblées, générant des protéines ramifiées. Alors que la principale fonction de l’ubiquitination est la dégradation des protéines par le protéasome, les autres UBls sont encore mal caractérisées. Dans ce contexte, le but de cette thèse était de développer de nouvelles approches protéomiques afin de définir le rôle de la SUMOylation dans des cellules humaines. En effet, l’identification des sites de SUMOylation par spectrométrie de masse (MS) est un défi. Ceci s’explique par la très faible abondance des protéines SUMOylées dans la cellule ainsi que par la longue chaine de 19 à 34 acides aminés laissés sur la protéine ciblée après digestion à la trypsine. Afin de pallier à ces deux problèmes, un mutant de la protéine SUMO a été généré au sein du laboratoire. La première altération sur ce mutant est l’insertion d’une séquence 6xHis à l’extrémité N-terminale de la protéine afin de faciliter l’enrichissement des protéines SUMOylés. La seconde altération de la protéine SUMO est la mutation d’une glutamine en arginine en position 6 à partir du C-terminal. Cette mutation a pour effet de libérer des peptides trypsiques ramifiés contenant seulement 5 acides aminés provenant de SUMO sur le peptide ciblé. Le premier but de cette thèse était de développer une méthode permettant de cibler spécifiquement les peptides SUMOylés lors d’une analyse par LC-MS. Cette méthode repose sur le patron de fragmentation propre de la chaine de 5 acides aminés commune à tous les peptides SUMOylés et utilise la technologie Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH). Lors d’une telle analyse, l’échantillon est injecté une première fois en fragmentant de larges fenêtres de masses. Ceci permet d’obtenir des spectres MS/MS pour tous les peptides présents dans l’échantillon. Un algorithme est ensuite utilisé afin de détecter les fenêtres de masses contenant des peptides SUMOylés et de recalculer le rapport masse sur charge des peptides candidats. Les injections subséquentes permettent ensuite de fragmenter uniquement les peptides candidats. Cette méthode s’est avérée être complémentaire aux méthodes conventionnelles et a permis l’identification d’un total de 54 peptides SUMOylés à partir d’extraits protéiques enrichis sur billes NiNTA. La seconde approche envisagée était d’ajouter une étape d’enrichissement supplémentaire au niveau peptidique. Pour cela, un anticorps reconnaissant la chaine de 5 acides aminés laissée après digestion tryptique a été produit. Cette étape d’immuno-purification supplémentaire a permis l’identification d’un total de 954 sites de SUMOylation dans des cellules humaines lors d’une analyse à grande échelle. Afin de valider les nouvelles cibles identifiées, une étude fonctionnelle de la SUMOylation de la protéine CDC73 a été réalisée. Cette étude a montré que la SUMOylation de CDC73 était requise pour sa rétention nucléaire, confirmant ainsi un rôle important pour la SUMOylation de cette protéine. Cependant, le principal défaut de la précédente approche était la nécessité de cultiver 500 millions de cellules par condition étudiée. Cette approche a donc été optimisée afin de pouvoir réduire le nombre de cellules utilisées dans une analyse. L’optimisation de chacun des paramètres analytiques nous a permis de réduire ce nombre de 50 fois, permettant ainsi d’identifier plus de 1000 sites de SUMOylation à partir de seulement 10 millions de cellules. De plus, nous avons montré que cette approche permet l’identification concomitante des sites de SUMOylation et d’ubiquitination dans un seul échantillon biologique. Ceci a permis d’identifier un nouveau mécanisme de régulation des deubiquitinases par les UBls, ainsi que d’élucider les mécanismes de translocation du protéasome dans la cellule. Dans l’ensemble, nous avons développé des méthodes permettant de mieux caractériser la SUMOylation des protéines et avons prouvé que ces méthodes sont applicables à l’étude de plusieurs UBls en parallèle. Nous sommes certains que l’approche par immuno-purification permettra à l’avenir d’identifier la SUMOylation à un niveau endogène. / Protein regulation by post-translational modification (PTMs) is a key event in regulating cellular function. These modifications include a group termed Ubiquitin-Like modifiers (UBLs) that contain, but is not limited to, ubiquitylation, neddylation and SUMOylation. While conventional modifications, such as phosphorylation or acetylation, involve a small chemical group, UBLs are proteins attached from their C-terminus to the epsilon amine group of a lysine contained in the targeted protein, thus generating branched proteins. While the main function of ubiquitylation is protein degradation by the proteasome, other UBLs remain mostly unexplored. In this context, the aim of this thesis was to develop new proteomics strategies to characterize SUMOylation in human cells. Indeed, identification of SUMOylation sites by mass spectrometry (MS) is a challenge. This is due to the low abundance of SUMOylated proteins in the cells as well as the long 19 to 34 amino acid SUMO remnant left of the target after trypsin digestion. In this context, our research group has developed a mutant of SUMO containing two mutations. The first mutation consists of a 6xHis tag at the N-terminus of SUMO in order to facilitate SUMOylated substrates enrichment at the protein level. A second mutation was also introduced at the 6th position from the C-terminus and consists in a glutamine to arginine substitution in order to release shorter SUMOylated peptides after trypsin digestion. The first goal of this thesis was to develop a targeted approach to specifically fragment SUMOylated peptides during an LC-MS run. This was enabled by the common fragmentation pattern of all SUMOylated peptides arising from the five amino acid SUMO remnant. Digested peptides were first analyzed using SequentialWindow Acquisition of all THeoretical Mass Spectra (SWATH). In this experiment, large mass windows are fragmented. A custom algorithm is then used that detects mass windows in which candidates are located and determine their intact mass. In subsequent injections these peptides were then specifically targeted. This method was complementary to data dependent acquisition and enabled the identification of 54 SUMOylated peptides. In a second approach, we wanted to enrich for SUMOylated substrates at the peptide level. An antibody was raised against the five amino acid SUMO remnant and used for immunopurification of SUMOylated peptides. In total, we identified 954 SUMOylation sites in human cells. Moreover, functional analysis of the newly identified substrate CDC73 revealed that SUMOylation on K136 is required for its nuclear retention, thus showing a new role for the SUMOylation of this protein. Although this approach gave new insights into the characterization of SUMOylated substrates, high amounts of material were still required to obtain such results. The last goal of this thesis was to optimize the previously developed immunopurification. Systematic optimization of every analytical parameter was done and enabled the reduction of the number of cells required by a factor of 50, without affecting the number of SUMOylation sites identified. Moreover, we used this approach to profile for SUMOylation and ubiquitylation dynamics in human cells upon proteasomal inhibition with MG132. This revealed an unexpected regulation mechanism of deubiquitinating enzymes by UBLs and unraveled translocation mechanisms of the proteasome in the cell. Our SUMO proteomic approach demonstrates capability for the concomitant analysis of SUMOylation and ubiquitylation. In the future, we hope to extend this approach to endogenous SUMOylation.
19

Covalent modification and intrinsic disorder in the stability of the proneural protein Neurogenin 2

McDowell, Gary Steven January 2011 (has links)
Neurogenin 2 (Ngn2) is a basic Helix-Loop-Helix (bHLH) transcription factor regulating differentiation and cell cycle exit in the developing brain. By transcriptional upregulation of a cascade of other bHLH factors, neural progenitor cells exit the cell cycle and differentiate towards a neuronal fate. Xenopus laevis Ngn2 (xNgn2) is a short-lived protein, targeted for degradation by the 26S proteasome. I have investigated the stability of Ngn2 mediated by post-translational modifications and structural disorder. Firstly I will describe work focused on ubiquitylation of xNgn2, targeting it for proteasomal degradation. xNgn2 is ubiquitylated on lysines, the recognized site of modification. I will discuss the role of lysines in ubiquitylation and stability of xNgn2. In addition to canonical ubiquitylation on lysines, I describe ubiquitylation of xNgn2 on non-canonical sites, namely its amino-terminal amino group, and cysteine, serine and threonine residues. I show that the ubiquitylation of cysteines in particular exhibits cell cycle dependence and is also observed in mammalian cell lines, resulting in cell cycle-dependent regulation of stability. I will then discuss whether phosphorylation, a regulator of xNgn2 activity, also affects xNgn2 stability. I will provide evidence of cell cycle-dependent phosphorylation of cyclin dependent kinase (cdk) consensus sites affecting the stability of xNgn2. Finally I describe studies on the folding properties of Ngn2 to assess their role in protein stability. xNgn2 associates with DNA and its heterodimeric binding partner xE12 and may interact directly with the cyclin-dependent kinase inhibitor Xic1. I will discuss the role of these interaction partners in xNgn2 stability. xNeuroD, a downstream target of xNgn2, is a related bHLH transcription factor which is stable. Here I describe domain swapping experiments between these two proteins highlighting regions conferring instability on the chimeric protein. Finally I will provide nuclear magnetic resonance (NMR) data looking at the effect of phosphorylation on protein structure in mouse Ngn2 (mNgn2).
20

Interlocking mechanisms regulating the circadian clock response to DNA damage

Zou, Xianlin 15 June 2021 (has links)
Almost all organisms have an endogenously generated and self-sustained time-keeping system that oscillates with a periodicity of about 24 h, namely the circadian clock, that help them adapt to daily environmental changes. Mammalian circadian rhythms are generated and maintained by transcription-translation feedback loops (TTFLs) and include post-translational modifications to help fine-tune the oscillation. Circadian rhythms control a broad range of cellular signaling pathways including those mechanisms involved in cell division and DNA damage response (DDR). We have previously established that the core clock component PERIOD2 (PER2) binds to the tumor suppressor protein p53, a key regulatory checkpoint component that modulates cell cycle progression and the cellular response to genotoxic stress. PER2 binding to p53 modulates p53's stability, cellular localization, and transcriptional activity. As described in Chapter 2, we now identified PER2 as a previously uncharacterized substrate for the ubiquitin E3 ligase mouse double minute 2 homolog (MDM2), an oncoprotein and negative regulator of p53. Our findings showed that the association between PER2 and MDM2 is independent of the presence of p53. In addition, MDM2 targets PER2 for ubiquitylation and degradation in a phosphorylation-independent fashion. Lastly, our studies showed that MDM2 collaborates with β-transducin repeat-containing proteins (β-TrCPs), an E3 ligase that targets PER2 for ubiquitylation in a phosphorylation-dependent manner, to control PER2 degradation and thus the length of circadian period. Because the p53:MDM2 pathway plays a critical role in the cellular response to genotoxic stress, the project described in Chapter 3 is based on the hypothesis that DNA damage caused by radiation shifts the circadian clock phase via the p53:PER2:MDM2 complex. Firstly, we generated Trp53KO (Trp53 gene encodes mouse p53) cell lines in NIH 3T3 Per2:dLuc reporter cells expressing luciferase driven by the Per2 promoter. Phase-response curves (PRCs) for Trp53WT and Trp53KO reporter cells were obtained in response to ionizing radiation (IR) treatments. Results indicated that Trp53 knockout did not affect radiation-induced circadian phase shifts, whereas increased p53 levels induced by transient inhibitor treatments prevented phase shifts when IR was performed at the trough of PER2 abundance. Additional mechanisms were unveiled that kinases ATM (Ataxia Telangiectasia Mutated), ATR (ATM- and Rad3-related) and CHK2 (Checkpoint Kinase 2) regulate radiation-induced phase shifts. Lastly, we found that CLOCK (Circadian Locomotor Output Cycles Kaput) and CRY1 (CRYPTOCHROME 1) were phosphorylated in response to radiation. Taken together, these results indicate that radiation-induced clock phase shifts involve the activity of kinases ATM, ATR and CHK2, and the modification in CLOCK and CRY1. Chapter 4 is a review of current findings about the interaction between circadian rhythms and the cell division cycle regulation pathway. The article highlights a multidisciplinary approach that combines mathematical modeling and experimental data to reveal how p53:PER2:MDM2 acts as a node controlling timely cell cycle progression. In summary, our work provided evidence that MDM2 targets PER2 for ubiquitylation and degradation in a phosphorylation-independent manner, and this influences circadian oscillation. Furthermore, the exploration of p53:PER2:MDM2 association shed light on how radiation-induced DNA damage shifts clock phase. These findings expose a crosstalk mechanism that senses DNA damage and shifts the clock system. / Doctor of Philosophy / Mammals have a time-keeping system that oscillates with a periodicity of about 24 h, namely the circadian clock, that allows physiological and behavioral adaptation to environmental changes. The circadian clock controls and coordinates processes as diverse as sleep/wake cycle, feeding cycle, daily changes in body temperature, blood pressure and hormone secretion. At the cellular level, the circadian clock exists in almost all cells and controls a broad range of cellular signaling pathways including mechanisms involved in cell division and DNA damage response (DDR) pathway. Circadian disruption, for example, by night shift work, results in accumulation of DNA damage in cells and increases risk of cancer. In my thesis, we found that MDM2, a protein that is involved in the DDR signaling pathway and has the potential to cause cancer, controls the degradation of the core clock protein PERIOD2 (PER2), and thus regulates the length of circadian period. Further work exposed the mechanism for how DNA damage shifts the circadian clock. Our findings will have significant impacts on health and biomedical science, especially shedding light on optimizing the time in a day to give chemo- and radiation therapies to cancer patients.

Page generated in 0.1009 seconds