Spelling suggestions: "subject:"bcb"" "subject:"ccb""
11 |
DRARS, a dynamic risk-aware recommender system / DRARS, un système de recommandation dynamique sensible au risqueBouneffouf, Djallel 19 December 2013 (has links)
L’immense quantité d'information générée et gérée au quotidien par les systèmes d'information et leurs utilisateurs conduit inéluctablement à la problématique de surcharge d'information. Dans ce contexte, les systèmes de recommandation traditionnels fournissent des informations pertinentes aux utilisateurs. Néanmoins, avec la propagation récente des dispositifs mobiles (smartphones et tablettes), nous constatons une migration progressive des utilisateurs vers la manipulation d'environnements pervasifs. Le problème avec les approches de recommandation traditionnelles est qu'elles n'utilisent pas toute l'information disponible pour produire des recommandations. Davantage d’informations contextuelles pourraient être utilisées dans le processus de recommandation pour aboutir à des recommandations plus précises. Les systèmes de recommandation sensibles au contexte (CARS) combinent les caractéristiques des systèmes sensibles au contexte et des systèmes de recommandation afin de fournir des informations personnalisées aux utilisateurs dans des environnements ubiquitaires. Dans cette perspective où tout ce qui concerne l'utilisateur est dynamique, les contenus qu’il manipule et son environnement, deux questions principales doivent être adressées : i) Comment prendre en compte l'évolution des contenus de l’utilisateur? et ii) Comment éviter d’être intrusif, en particulier dans des situations critiques? En réponse à ces questions, nous avons développé un système de recommandation dynamique et sensible au risque appelé DRARS (Dynamic Risk-Aware Recommender System), qui modélise la recommandation sensible au contexte comme un problème de bandit. Ce système combine une technique de filtrage basée sur le contenu et un algorithme de bandit contextuel. Nous avons montré que DRARS améliore la stratégie de l'algorithme UCB (Upper Confidence Bound), le meilleur algorithme actuellement disponible, en calculant la valeur d'exploration la plus optimale pour maintenir un bon compromis entre exploration et exploitation basé sur le niveau de risque de la situation courante de l'utilisateur. Nous avons mené des expériences dans un contexte industriel avec des données réelles et des utilisateurs réels et nous avons montré que la prise en compte du niveau de risque de la situation de l'utilisateur augmentait significativement la performance du système de recommandation / The vast amount of information generated and maintained everyday by information systems and their users leads to the increasingly important concern of overload information. In this context, traditional recommender systems provide relevant information to the users. Nevertheless, with the recent dissemination of mobile devices (smartphones and tablets), there is a gradual user migration to the use of pervasive computing environments. The problem with the traditional recommendation approaches is that they do not utilize all available information for producing recommendations. More contextual parameters could be used in the recommendation process to result in more accurate recommendations. Context-Aware Recommender Systems (CARS) combine characteristics from context-aware systems and recommender systems in order to provide personalized recommendations to users in ubiquitous environments. In this perspective where everything about the user is dynamic, his/her content and his/her environment, two main issues have to be addressed: i) How to consider content evolution? and ii) How to avoid disturbing the user in risky situations?. In response to these problems, we have developed a dynamic risk sensitive recommendation system called DRARS (Dynamic Risk-Aware Recommender System), which model the context-aware recommendation as a bandit problem. This system combines a content-based technique and a contextual bandit algorithm. We have shown that DRARS improves the Upper Confidence Bound (UCB) policy, the currently available best algorithm, by calculating the most optimal exploration value to maintain a trade-off between exploration and exploitation based on the risk level of the current user's situation. We conducted experiments in an industrial context with real data and real users and we have shown that taking into account the risk level of users' situations significantly increases the performance of the recommender system
|
12 |
Etude et réalisation d'une unité de contrôle banalisée pour systèmes IBM 360/370Arnaud, Serge 15 October 1979 (has links) (PDF)
L'organisation des systèmes d'entrées sorties. Les entrées sorties dans le système IBM 360. Présentation de l'UCB. Une application de l'UCB : le module interface-canal du système PIAR. Un logiciel de test pour l'UCB. Améliorations et perspectives.
|
13 |
A Study of Thompson Sampling Approach for the Sleeping Multi-Armed Bandit ProblemChatterjee, Aritra January 2017 (has links) (PDF)
The multi-armed bandit (MAB) problem provides a convenient abstraction for many online decision problems arising in modern applications including Internet display advertising, crowdsourcing, online procurement, smart grids, etc. Several variants of the MAB problem have been proposed to extend the basic model to a variety of practical and general settings. The sleeping multi-armed bandit (SMAB) problem is one such variant where the set of available arms varies with time. This study is focused on analyzing the efficacy of the Thompson Sampling algorithm for solving the SMAB problem.
Any algorithm for the classical MAB problem is expected to choose one of K available arms (actions) in each of T consecutive rounds. Each choice of an arm generates a stochastic reward from an unknown but fixed distribution. The goal of the algorithm is to maximize the expected sum of rewards over the T rounds (or equivalently minimize the expected total regret), relative to the best fixed action in hindsight. In many real-world settings, however, not all arms may be available in any given round. For example, in Internet display advertising, some advertisers might choose to stay away from the auction due to budget constraints; in crowdsourcing, some workers may not be available at a given time due to timezone difference, etc. Such situations give rise to the sleeping MAB abstraction.
In the literature, several upper confidence bound (UCB)-based approaches have been proposed and investigated for the SMAB problem. Our contribution is to investigate the efficacy of a Thomp-son Sampling-based approach. Our key finding is to establish a logarithmic regret bound, which non-trivially generalizes a similar bound known for this approach in the classical MAB setting. Our bound also matches (up to constants) the best-known lower bound for the SMAB problem. Furthermore, we show via detailed simulations, that the Thompson Sampling approach in fact outperforms the known algorithms for the SMAB problem.
|
Page generated in 0.0433 seconds