• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 62
  • 62
  • 26
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bond Performance Between Ultra-High Performance Concrete and Prestressing Strands

Lubbers, Anna R. 04 December 2003 (has links)
No description available.
22

Flexural Redistribution in Ultra-High Performance Concrete Lab Specimens

Moallem, Mohammad Reza 30 July 2010 (has links)
No description available.
23

DEVELOPMENT, CHARACTERIZATION, AND MODELING OF PHYSICAL, MECHANICAL, AND DURABILITY PROPERTIES OF SUSTAINABLE ULTRA-HIGH PERFORMANCE CONCRETE

Hasan, Tawsif Mohammad 27 July 2022 (has links)
No description available.
24

Multiscale Computational Framework for Analysis and Design of Ultra-High Performance Concrete Structural Components and Systems

El Helou, Rafic Gerges 04 November 2016 (has links)
This research develops and validates computational tools for the design and analysis of structural components and systems constructed with Ultra-High Performance Concrete (UHPC). The modeling strategy utilizes the Lattice Discrete Particle Model (LDPM) to represent UHPC material and structural member response, and extends a structural-level triaxial continuum constitutive law to account for the addition of discrete fibers. The approach is robust, general, and could be utilized by other researchers to expand the computational capability and simulate the behavior of different composite materials. The work described herein identifies the model material parameters by conducting a complete material characterization for UHPC, with and without fiber reinforcement, describing its behavior in unconfined compression, uniaxial tension, and fracture toughness. It characterizes the effect of fiber orientations, fiber-matrix interaction, and resolves the issue of multi-axial stress states on fiber pullout. The capabilities of the computational models are demonstrated by comparing the material test data that were not used in the parameter identification phase to numerical simulations to validate the models' predictive capabilities. These models offer a mechanics-based shortcut to UHPC analysis that can strategically support ongoing development of material and structural design codes and standards. / Ph. D.
25

Mechanical Properties and Durability of Sustainable UHPC Incorporated Industrial Waste Residues and Sea/Manufactured Sand

Ge, W., Zhu, S., Yang, J., Ashour, Ashraf, Zhang, Z., Li, W., Jiang, H., Cao, D., Shuai, H. 02 November 2023 (has links)
Yes / Considering the continuous development of sustainable development, energy saving, and emission reduction concepts, it is very important to reduce concrete's cement content in order to improve its environmental impact. Using reactive admixture to replace part of the cement in ultra-high performance concrete (UHPC) can effectively improve the overall performance of the concrete and reduce carbon dioxide emissions (CO2), which is an important aspect of environmental protection. Here, industrial waste residue (fly ash and slag), sea sand (SS), and manufactured sand (MS) were used to produce UHPC under standard curing condition, to reduce the material cost and make the it more environmentally friendly and sustainable. The effects of water-binder ratio, contents of cementitious materials, types of sands, and content of steel fibers on the mechanical performance of UHPC under standard curing were investigated experimentally. In addition, the effects of various factors on the depth under hydraulic pressure and electric flux of UHPC, mass loss, relative dynamic modulus of elasticity, flexural, and compressive strengths of UHPC specimens after freeze-thaw cycles were conducted to evaluate the impermeability, chloride, and freeze-thaw resistance of various UHPCs produced. The obtained experimental results show that the SS-UHPC and MS-UHPC prepared by standard curing exhibit high strength, excellent impermeability, and chloride resistance. The frost resistant grade of all groups of UHPCs prepared by standard curing are greater than F500 and had excellent freeze-thaw resistance, including those produced with local tap water or artificial seawater. The investigation presented in this paper could contribute to the production of new UHPCs of low cost and environmental-friendly and accelerate the application of UHPC in engineering structures.
26

Ultra-High Performance Concrete Shear Walls in Tall Buildings

Dacanay, Thomas Christian 18 April 2016 (has links)
This thesis presents the results of an effort to quantify the implications of using ultra-high performance concrete (UHPC) for shear walls in tall buildings considering structural efficiency and environmental sustainability. The Lattice Discrete Particle Model (LDPM) was used to simulate the response to failure of concrete shear walls without web steel bar reinforcement under lateral loading and constant axial compressive loading. The structural efficiency of UHPC with simulated compressive strength of f'c = 231 MPa was compared to that of a high-performance concrete (HPC) with f'c = 51.7 MPa simulated compressive strength. UHPC shear walls were found to have equal uncracked stiffness and superior post-cracking capacity at a thickness 58% of the HPC shear wall thickness, and at 59% of the HPC shear wall weight. Next, the environmental sustainability of UHPC with compressive strength f'c = 220-240 MPa was compared to that of an HPC with compressive strength f'c = 49 MPa with a life-cycle assessment (LCA) approach, using SimaPro sustainability software. At a thickness 58% of the HPC shear wall thickness, UHPC shear walls with 0% fiber by volume were found to have an environmental impact 6% to 10% worse than that of HPC shear walls, and UHPC shear walls with 2% fiber by volume were found to have an environmental impact 47% to 58% worse than that of HPC shear walls. The results detailed herein will allow for design guidelines to be developed which take advantage of UHPC response in shear. Additionally, this work may be implemented into topology optimization frameworks that incorporate the potential improvements in structural efficiency and sustainability through using UHPC. / Master of Science
27

Reforço de pilares curtos de concreto armado por encamisamento com concreto de ultra-alto desempenho / Strengthening of short columns with jacketing for ultra-high performance concrete

Enami, Rodrigo Mazia 16 October 2017 (has links)
O presente trabalho avaliou a influência dos concretos de ultra-alto desempenho com fibras (UHPFRC) e sem fibras (UHPC) no reforço de pilares curtos de concreto armado de seção transversal circular e quadrada. Avaliou-se também a adição de armaduras adicionais de reforço e de polímeros reforçados com fibras de carbono (PRFC) em alguns pilares reforçados. Para a avaliação deste novo sistema de reforço optou-se pela realização de um programa experimental e simulações numéricas. É importante ressaltar que no programa experimental, nenhum pilar reforçado possuía seção transversal maior que a seção do pilar de referência. Foi verificado por meio do programa experimental, que as camisas de UHPC apresentaram ruína de natureza frágil e não se recomenda a sua utilização a menos que acompanhada de mecanismos que garantam adequado confinamento do pilar reforçado. Nos pilares circulares e quadrados reforçados com UHPFRC foram verificados, respectivamente, incrementos de resistência de 106,4% e 83,6% onde o concreto do cobrimento foi substituído por UHPFRC, 154,3% e 111,7% onde além da substituição do cobrimento foram inseridas armaduras adicionais e 160% e 85,6% onde houve a colocação de PRFC após a substituição do cobrimento. Todos os pilares reforçados com UHPFRC não apresentaram destacamento da camisa de reforço. Foram realizadas simulações numéricas variando a espessura da camisa de UHPFRC e do número de camadas de PRFC tanto nos pilares de seção circular como nos pilares de seção quadrada. Por meio destas simulações, notou-se que a adição de pequenos incrementos de espessura da camisa de UHPFRC, proporciona elevados incrementos de resistência ao pilar reforçado, ao passo que o aumento do número de camadas de PRFC não influenciaria significantemente no incremento de resistência e sim na ductilidade do conjunto. / The present work evaluated the influence of ultra-high performance concrete with fibers (UHPFRC) and without fibers (UHPC) on the strengthening of short columns of reinforced concrete of circular and square cross section. It was also evaluated the addition of additional reinforcement and carbon fiber reinforced polymers (PRFC) on some strengthened columns. For the evaluation of this new system of strengthening we opted for the realization of an experimental program and numerical simulations. It is important to note that in the experimental program, no strengthened columns had a larger cross section than the reference column section. It was verified through the experimental program that the UHPC shirts presented ruin of a fragile nature and their use is not recommended unless accompanied by mechanisms that guarantee adequate confinement to the strengthened columns. In the circular and square columns strengthened with UHPFRC, respectively, resistance increments of 106.4% and 83.6% were verified, where the cover concrete was replaced by UHPFRC, 154.3% and 111.7%, in addition to the substitution of additional reinforcement were inserted and 160% and 85.6% where PRFC placement was performed after the replacement of the cover. All strengthened columns with UHPFRC did not present detachment of the strengthening jacket. Numerical simulations were performed by varying the thickness of the UHPFRC jacket and the number of PRFC layers on both the circular section columns and the square section columns. Through these simulations, it was noted that the addition of small thickness increments of the UHPFRC jacket would provide high increments of strength to the strengthened columns, while increasing the number of PRFC layers would not significantly influence the increase in strength but rather ductility of the assembly.
28

Reforço de pilares curtos de concreto armado por encamisamento com concreto de ultra-alto desempenho / Strengthening of short columns with jacketing for ultra-high performance concrete

Rodrigo Mazia Enami 16 October 2017 (has links)
O presente trabalho avaliou a influência dos concretos de ultra-alto desempenho com fibras (UHPFRC) e sem fibras (UHPC) no reforço de pilares curtos de concreto armado de seção transversal circular e quadrada. Avaliou-se também a adição de armaduras adicionais de reforço e de polímeros reforçados com fibras de carbono (PRFC) em alguns pilares reforçados. Para a avaliação deste novo sistema de reforço optou-se pela realização de um programa experimental e simulações numéricas. É importante ressaltar que no programa experimental, nenhum pilar reforçado possuía seção transversal maior que a seção do pilar de referência. Foi verificado por meio do programa experimental, que as camisas de UHPC apresentaram ruína de natureza frágil e não se recomenda a sua utilização a menos que acompanhada de mecanismos que garantam adequado confinamento do pilar reforçado. Nos pilares circulares e quadrados reforçados com UHPFRC foram verificados, respectivamente, incrementos de resistência de 106,4% e 83,6% onde o concreto do cobrimento foi substituído por UHPFRC, 154,3% e 111,7% onde além da substituição do cobrimento foram inseridas armaduras adicionais e 160% e 85,6% onde houve a colocação de PRFC após a substituição do cobrimento. Todos os pilares reforçados com UHPFRC não apresentaram destacamento da camisa de reforço. Foram realizadas simulações numéricas variando a espessura da camisa de UHPFRC e do número de camadas de PRFC tanto nos pilares de seção circular como nos pilares de seção quadrada. Por meio destas simulações, notou-se que a adição de pequenos incrementos de espessura da camisa de UHPFRC, proporciona elevados incrementos de resistência ao pilar reforçado, ao passo que o aumento do número de camadas de PRFC não influenciaria significantemente no incremento de resistência e sim na ductilidade do conjunto. / The present work evaluated the influence of ultra-high performance concrete with fibers (UHPFRC) and without fibers (UHPC) on the strengthening of short columns of reinforced concrete of circular and square cross section. It was also evaluated the addition of additional reinforcement and carbon fiber reinforced polymers (PRFC) on some strengthened columns. For the evaluation of this new system of strengthening we opted for the realization of an experimental program and numerical simulations. It is important to note that in the experimental program, no strengthened columns had a larger cross section than the reference column section. It was verified through the experimental program that the UHPC shirts presented ruin of a fragile nature and their use is not recommended unless accompanied by mechanisms that guarantee adequate confinement to the strengthened columns. In the circular and square columns strengthened with UHPFRC, respectively, resistance increments of 106.4% and 83.6% were verified, where the cover concrete was replaced by UHPFRC, 154.3% and 111.7%, in addition to the substitution of additional reinforcement were inserted and 160% and 85.6% where PRFC placement was performed after the replacement of the cover. All strengthened columns with UHPFRC did not present detachment of the strengthening jacket. Numerical simulations were performed by varying the thickness of the UHPFRC jacket and the number of PRFC layers on both the circular section columns and the square section columns. Through these simulations, it was noted that the addition of small thickness increments of the UHPFRC jacket would provide high increments of strength to the strengthened columns, while increasing the number of PRFC layers would not significantly influence the increase in strength but rather ductility of the assembly.
29

Mechanical Property Development and Numerical Modeling of Ultra-High Performance Concrete Focused on Isothermal Curing Conditions

Allard, Thomas 14 December 2018 (has links)
Ultra-high performance concrete (UHPC) has progressively gained interest because of its favorable strength and durability properties. Literature shows that curing temperature has a significant effect on the resultant mechanical properties of UHPC, generally resulting in increased compressive strength. However, limited datasets are currently available to ascertain the degree of change related to compressive strength as a function of curing temperature and conditions. This study investigates the effect of isothermal and submerged curing temperature conditions, ranging from 10°C to 90°C, on the compressive strength and elastic modulus development of UHPC and generates a numerical model to capture these effects. The extent and rate of compressive strength development in Cor-Tuf UHPC was found to increase with curing temperature, while only the rate of elastic modulus development increased with curing temperature. The numerical model shows reasonable agreement when compared with the experimental results and was successfully implemented in finite element analysis software.
30

[pt] COMPORTAMENTO MECÂNICO DE VIGAS DE CONCRETO DE ULTRA-ALTO DESEMPENHO / [en] MECHANICAL BEHAVIOR OF ULTRA-HIGH PERFORMANCE CONCRETE BEAMS

PATRICIA BARRETO DE LIMA 03 January 2022 (has links)
[pt] O presente trabalho avalia o efeito da utilização de concreto de ultra-alto desempenho (CUAD) em elementos estruturais, analisando seu comportamento à flexão e o impacto da utilização desse material no seu dimensionamento. Através de ensaios de caracterização do material, foram estudadas as suas propriedades mecânicas. Os resultados dos testes já apresentavam resistência à compressão de 104 MPa com 7 dias de idade e 142 MPa aos 28 dias de idade, além de um aumento na capacidade de carga e na ductilidade dos corpos de prova com o aumento da quantidade de fibras utilizadas no CUAD. Na escala estrutural, foram analisadas quatro vigas de concreto armado, onde duas foram produzidas com concreto de ultra-alto desempenho e duas com concreto convencional (CC), com taxa de armaduras de 0,44 por cento e 1,78 por cento. Primeiramente foi realizada uma análise comparativa dos resultados dos momentos obtidos experimentalmente e teoricamente (baseado nas normas NBR 6118:2014, ACI 544.4R-18 e Model Code 2010) não apresentando diferença significativa. Posteriormente, através dos resultados dos ensaios foi possível verificar que, a utilização do CUAD melhora, no geral, as propriedades mecânicas dos elementos analisados. A utilização do CUAD em vigas subarmadas apresenta resultados similares às vigas normalmente armadas com CC. Além disso, quando combinadas a utilização do CUAD com o aumento da taxa de armaduras, os resultados melhoram significativamente, apresentando, por exemplo um ganho na capacidade de carga de aproximadamente 40 por cento no aumento da taxa geométrica de armaduras e de 75 por cento com o aumento da taxa de armaduras combinada com a utilização do CUAD. / [en] The present work evaluates the effect of the use of ultra-high performance concrete (UHPC) in structural elements, analyzing its behavior to bending and the impact of the use of this material on its dimensioning. Through tests of characterization of the material, its mechanical properties were studied. The results of the tests already presented compressive strength of 104 Mpa at 7 days of age and 142 Mpa at 28 days of age, in addition to an increase in load capacity and ductility of the specimens with the increase in the amount of fibers used in the UHPC. In the structural scale, four reinforced concrete beams were analyzed, two of which were produced with ultra-high performance concrete and two with conventional concrete (CC), with an armor rate of 0.44 percent and 1.78 percent. First, a comparative analysis of the results of the moments obtained experimentally and theoretically (based on the norms NBR 6118:2014, ACI 544.4R-18 and Model Code 2010) was performed, with no significant difference. Subsequently, through the results of the tests it was possible to verify that the use of UHPC improves, in general, the mechanical properties of the analyzed elements. The use of UHPC in underarmed beams presents similar results to beams normally armed with CC. In addition, when combined with the use of UHPC with increased reinforcement rate, the results improve significantly, presenting, for example, a gain in load capacity of approximately 40 percent in the increase in the geometric rate of reinforcements and 75 percent with the increase in the reinforcement rate combined with the use of UHPC.

Page generated in 0.2192 seconds