• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 1
  • Tagged with
  • 42
  • 42
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3

Zhang, Zhipeng, von Wenckstern, Holger, Lenzner, Jörg, Lorenz, Michael, Grundmann, Marius 06 August 2018 (has links)
UV and deep-UV selective photodiodes from visible-blind to solar-blind were realized based on a Si-doped (InxGa1–x)2O3 thin film with a monotonic lateral variation of 0.0035<x<0.83. Such layer was deposited by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. The photo response signal is provided from a metal-semiconductor-metal structure upon backside illumination. The absorption onset was tuned from 4.83 to 3.22 eV for increasing x. Higher responsivities were observed for photodiodes fabricated from indium-rich part of the sample, for which an internal gain mechanism could be identified. VC 2016 AIP Publishing LLC.
32

Utilizing Cancer Resistant and Susceptible Mice to Identify the Genetic Contributions to Cutaneous Squamous Cell Carcinoma Susceptibility

Fleming, Jessica L. 18 December 2012 (has links)
No description available.
33

Development of Methodologies for Improving Thermal Stability of Plant Fiber for Application in Thermoplastic Composites

Vedoy, Diogenes 13 December 2012 (has links)
Thermal degradation during composite fabrication is the main impediment for the wide use of agro-based fibers as filler and reinforcement in engineering thermoplastic composites. Different thermal, chemical and physical techniques (e.g., alkali, steam explosion and retting) aiming to increase the fiber-matrix adhesion or reduce the plant fibers water absorption have been presented in the literature. However, there have been very few attempts to solve the difficulties associated with processing engineering thermoplastics with plant fibers. Most of these attempts involved the use of additives (such as plasticizers and salts) to lower the polymers processing temperature and plant fibers with inherent higher thermal stability (such as Curaua and cellulose). Despite all these efforts, no important progress has been achieved. Therefore, to explore the full potential of wheat straw and expand its use in commercial applications, an experimental study was carried out to develop different methodologies to improve the thermal stability of wheat straw fiber. In this thesis, most attention is given to wheat straw because of the relevance and potential of entering the market as commercial filler today. It is reported here that the thermal stability and chemical composition of wheat straw do not seem to significantly vary with wheat straw type and cultivation region. For example, the main thermal degradation of wheat straw samples starts in a narrow window of temperature which goes from 220.8 to 237.8 °C and from 224.8 to 238.1 °C for air and nitrogen atmospheres, respectively. On the other hand, lignin and inorganic materials are the wheat straw components with the highest relative variation. In addition, it is showed here that silane modification is an efficient method to increase the temperature of degradation of wheat straw. The highest improvements were achieved with chlorosilane modifiers and combinations of alkoxysilane and chlorosilane modifiers. In fact, the silane treated samples have lower thermal degradation during the fabrication of composites with polyamide-6. It is observed here that the extruded and injection molded composites containing silane treated wheat straw samples have significant smaller thermal degradation than those utilizing untreated wheat straw samples. Equally important, it seems that the mechanical properties of the composites are not affected by the addition of silane treated samples in comparison with untreated wheat straw. In addition, another efficient treatment method is presented in this thesis. This method employs ultraviolet light to modify and improve the thermal stability of wheat straw. This method offers important economical and environmental benefits. Significant improvements (e.g., 40 ºC increase on the temperature at 2% of weight loss) were achieved after treatment for short periods of time (up to 15 minutes) and without the use of any pre-treatment or production of toxic by-products. This treatment method represents a novel application for ultraviolet light with potential for industrial use.
34

Development of Methodologies for Improving Thermal Stability of Plant Fiber for Application in Thermoplastic Composites

Vedoy, Diogenes 13 December 2012 (has links)
Thermal degradation during composite fabrication is the main impediment for the wide use of agro-based fibers as filler and reinforcement in engineering thermoplastic composites. Different thermal, chemical and physical techniques (e.g., alkali, steam explosion and retting) aiming to increase the fiber-matrix adhesion or reduce the plant fibers water absorption have been presented in the literature. However, there have been very few attempts to solve the difficulties associated with processing engineering thermoplastics with plant fibers. Most of these attempts involved the use of additives (such as plasticizers and salts) to lower the polymers processing temperature and plant fibers with inherent higher thermal stability (such as Curaua and cellulose). Despite all these efforts, no important progress has been achieved. Therefore, to explore the full potential of wheat straw and expand its use in commercial applications, an experimental study was carried out to develop different methodologies to improve the thermal stability of wheat straw fiber. In this thesis, most attention is given to wheat straw because of the relevance and potential of entering the market as commercial filler today. It is reported here that the thermal stability and chemical composition of wheat straw do not seem to significantly vary with wheat straw type and cultivation region. For example, the main thermal degradation of wheat straw samples starts in a narrow window of temperature which goes from 220.8 to 237.8 °C and from 224.8 to 238.1 °C for air and nitrogen atmospheres, respectively. On the other hand, lignin and inorganic materials are the wheat straw components with the highest relative variation. In addition, it is showed here that silane modification is an efficient method to increase the temperature of degradation of wheat straw. The highest improvements were achieved with chlorosilane modifiers and combinations of alkoxysilane and chlorosilane modifiers. In fact, the silane treated samples have lower thermal degradation during the fabrication of composites with polyamide-6. It is observed here that the extruded and injection molded composites containing silane treated wheat straw samples have significant smaller thermal degradation than those utilizing untreated wheat straw samples. Equally important, it seems that the mechanical properties of the composites are not affected by the addition of silane treated samples in comparison with untreated wheat straw. In addition, another efficient treatment method is presented in this thesis. This method employs ultraviolet light to modify and improve the thermal stability of wheat straw. This method offers important economical and environmental benefits. Significant improvements (e.g., 40 ºC increase on the temperature at 2% of weight loss) were achieved after treatment for short periods of time (up to 15 minutes) and without the use of any pre-treatment or production of toxic by-products. This treatment method represents a novel application for ultraviolet light with potential for industrial use.
35

Colliding Laser Produced Plasma Physics and Applications in Inertial Fusion and Nanolithography

John P. Oliver (5930102) 17 January 2019 (has links)
<div>Laser-produced plasmas (LPP) have been used in a wide range of applications such as in pulsed laser deposition (PLD), extreme ultraviolet lithography (EUVL), laser-induced breakdown spectroscopy (LIBS), and many more. In the collision of two laser-produced plasmas, the two counter-streaming plasmas may face a degree of stagnation which influences the subsequent development of the compound plasma plume. The plume development of the stagnation layer can deviate quite noticeably from typical laser-plasma behavior. For instance, an enhanced degree of collisionality is expected, especially when the plasma collision transpires in a low pressure ambient. Colliding plasma can be intentionally implemented or conversely may occur naturally. In EUV lithography colliding plasma could service as an efficient EUV source with inherent debris mitigation. Conversely, colliding plasma could manifest in an inertial fusion energy (IFE) chamber leading to contamination, disrupting successful device operation.</div><div><br></div><div>Various techniques such as optical emission spectroscopy (OES), CCD plume imaging, laser-induced fluorescence (LIF), laser-induced incandescence (LII), and scanning electron microscopy (SEM) may be used to study laser-produced plasmas and their associated byproducts. These techniques will be used extensively throughout this work to aid in developing an understanding of the various physical and chemical phenomena occurring in these plasmas.</div><div><br></div><div><div>Chapter 1 provides introductory knowledge regarding LPPs with a specific exploration into colliding plasma and its relevance to a broad body of scientific knowledge. Additionally, the principles behind the various experimental techniques are capitulated.</div><div><br></div><div>Chapter 2 presents the laboratory facilities available at our Center for Materials Under eXtreme Environment (CMUXE) which can be used to study LPP. The various equipment (chambers, lasers, spectrograph, etc.) are discussed in detail.</div><div><br></div><div>Chapter 3 begins the series of substantive chapters which comprise the original research of this thesis. Here, the early formation (< 1 μs) of colliding carbon plasmas produced from the ablation of graphite is explored. The influence of plume hydrodynamics on the temporary lateral confinement of the stagnation layer is discussed with attention to the three different laser intensities studied. Additionally, species in the plasma were identified using OES and monochromatic plume imaging. A large increase in Swan emission from C2 dimers is observed in the stagnation layer, suggesting formation of C2 and/or re-excitation of C2 produced ab initio during laser ablation. Results were compared with HEIGHTS computational modeling to verify observations and to validate the code package for a new plasma regime.</div><div><br></div><div>Chapter 4 functions as a continuation from Chapter 3, looking into the intermediate time (1-10 μs) dynamics of colliding carbon plasma. To observe transient molecular species of carbon, C2 and C3, LIF was employed. By acquiring plume images through LIF, the various mechanisms by which C2 and C3 appear at different times in the plasma lifetime may be discerned. Using optical time-of-flight (OTOF), more information of carbon species populations may be determined to construct space-time contours which offer corroborative information regarding the spatiotemporal development of the stagnation layer.</div></div><div><br></div><div><div>Chapter 5 presents work on colliding Sn plasma for application as a EUV light source. The accumulation of material along the stagnation layer makes colliding plasmas a suitable preplasma in a dual pulse laser scheme. Dual-pulse EUV concepts call for the formation of a preplasma from the stagnation of two Sn plasmas. This preformed plasma is then subject to a second, pumping laser purposed to optimize the conversion efficiency (CE) of laser energy into EUV output. Characterization of the stagnation layer was obtained through optical emission spectroscopy while CE data is obtained using an absolutely calibrated EUV photodiode. HEIGHTS computational modeling then provides prediction of EUV emission upon using a CO2 laser for preplasma reheat.</div><div><br></div><div>Chapter 6 explores the collision between two dissimilar plasmas. Laser-produced plasma of Si and C are created in a manner which enables the two plasmas to collide. The ensuing development of the colliding plasma regime is then discussed in terms of relevant plume hydrodynamics. Analysis of the colliding regime is accomplished using fast-gated plume imaging and optical time-of-flight.</div><div><br></div><div>The final chapter, Chapter 7, provides a concise summary of the results presented in the preceding chapters. Additionally, recommended research directives are presented which are designed with consideration for the current facilities and capabilities at CMUXE.</div></div>
36

Advanced Reduction Processes - A New Class of Treatment Processes

Vellanki, Bhanu Prakash 2012 August 1900 (has links)
A new class of treatment processes called Advanced Reduction Processes (ARP) has been proposed. The ARPs combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. Batch screening experiments were conducted to identify effective ARP by applying several combinations of activation methods (ultraviolet light, ultrasound, electron beam, microwaves) and reducing agents (dithionite, sulfite, ferrous iron, sulfide) to degradation of five target contaminants (perchlorate, nitrate, perfluorooctanoic acid, 2,4 dichlorophenol, 1,2 dichloroethane) at 3 pH levels (2.4, 7.0, 11.2). These experiments identified the combination of sulfite activated by ultraviolet light produced by a low pressure mercury vapor lamp as an effective ARP. More detailed kinetic experiments were conducted with nitrate and perchlorate as target compounds and nitrate was found to degrade more rapidly than perchlorate. The effects of pH, sulfite concentration, and light intensity on perchlorate and nitrate degradation were investigated. The effectiveness of the sulfite/UV-L treatment process improved with increasing pH for both perchlorate and nitrate.
37

Tratamento de corante têxtil por eletrólise, fotólise e fotocatálise utilizando LED UV = Treatment of textile dye by electrolytic, photolytic and photocatalytic processes / Treatment of textile dye by electrolytic, photolytic and photocatalytic processes

Oliveira, Clélia Aparecida da Silva, 1972- 23 August 2018 (has links)
Orientador: Peterson Bueno de Moraes / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-23T06:55:03Z (GMT). No. of bitstreams: 1 Oliveira_CleliaAparecidadaSilva_M.pdf: 1434373 bytes, checksum: 2411a1ce9b13fbe4e8f7d778c6dfd3ea (MD5) Previous issue date: 2013 / Resumo: A indústria têxtil gera elevados volumes de efluentes com alta carga orgânica e compostos recalcitrantes, os quais são tratados por sistemas baseados em processos físicos, químicos e biológicos convencionais. Entretanto, o caráter não destrutivo dos tratamentos convencionais representa um sério problema no setor. Nos últimos 20 anos, os Processos Oxidativos Avançados (POA) têm estado em evidência devido à sua capacidade em degradar inúmeros compostos orgânicos contidos em águas e efluentes. Uma grande quantidade de trabalhos utilizando luz UV a partir de lâmpadas de vapor de mercúrio tem resultado em elevada eficiência de degradação de substratos recalcitrantes incluindo efluentes têxteis; entretanto, demandam elevado consumo de energia elétrica, encarecendo o tratamento. Em contrapartida, o surgimento de Diodos Emissores de Luz Ultravioleta (LED UV) abre novas fronteiras de aplicação no campo de tratamento de águas residuárias, quanto a custo, operacionalidade e tamanho dos sistemas. Nesse trabalho estudou-se a degradação de um efluente têxtil simulado contendo o corante Remazol Azul Brilhante (C.I. Reactive Blue 19) através de processos eletroquímicos e fotoeletroquímicos que utilizam LED UV, utilizando-se dois reatores: um operando em batelada contendo o fotocatalisador TiO2 e o outro, em fluxo, contendo um cátodo (tela cilíndrica de aço-inoxidável), um tubo de quartzo contendo os LED UV e o Anodo Dimensionalmente Estável (ADE 70%TiO2/30%RuO2). Os resultados demonstraram que, no reator de bancada, a eficiência de remoção de cor foi de 100% para concentração inicial de 50 mg L-1 do corante, em 24 horas de tratamento. No reator em fluxo, utilizando Na2SO4 como eletrólito, o processo eletrolítico resultou em eficiência de 65%; o fotoeletrocatalítico, em 68%, operando a 750 L h-1 e em 57,3 mA cm-2. Quando foi utilizado o eletrólito NaCl, obteve-se remoção de 100% da cor em 5 minutos de tratamento a 750 L h-1, independente da concentração inicial do corante utilizada (50 mg L-1 ou 100 mg L-1), da concentração do eletrólito (0,05 M ou 0,1 M), da densidade de corrente (14,3 mA cm-2 , 28,7 mA cm-2 ou 57,3 mA cm-2) e do processo utilizado / Abstract: The textile industry generates large amount of wastewater containing significant organic load and recalcitrant compounds, which in most cases are treated by conventional systems involving physical, chemical and biological processes, the latter represented mainly by activated-sludge treatment. However, the non-destructive profile of conventional treatments is a serious problem for textile-based industry. Over the past 20 years, the study of Advanced Oxidation Processes (AOP) has been carried out due to its high capacity degradation of numerous organic pollutants contained in waters and wastewaters. Research using UV light from mercury vapor lamps usually has resulted in high efficiency degradation of recalcitrant substrates including textile effluents but requires high electrical power consumption besides other drawbacks. In contrast, the emergence of Ultraviolet Light Emitting Diodes (UV LED) opens new perspectives for application on wastewater treatment, concerning efficiency, footprint and costs of the systems. In this work we studied the degradation of a simulated wastewater containing a textile dye, Remazol Brilliant Blue (C.I. Reactive Blue 19) through electrochemical and photoelectrochemical processes using UV LED as ultraviolet radiation source. The experimental apparatus consisted of two systems: the first, a bench-scale reactor containing TiO2 photocatalyst (P25 DEGUSSA) in solution, and another pilot-scale system operated in batch recirculation mode composed of an tubular stainless-steel screen cathode, a quartz tube containing the UV LED and a oxide-coated titanium anode (DSA©30%TiO2/70%RuO2). The results showed total decolorization of a solution containing 50 mg L-1 of RB in 24-hour treatment in the bench-scale reactor. Tests on flow reactor using Na2SO4 as supporting electrolyte resulted in 65% of color removal using electrolytic process and 68% for photoelectrocatalytic process operating at 750 L h-1 and 57.3 mA cm-2. In experiments using the electrolyte NaCl it was obtained 100% in the color degradation within 5 minutes of treatment at 750 L h-1, regardless of the: initial concentration of dye used (50 mg L-1; 100 mg L-1), concentration of the electrolyte (0.05 M; 0.1 M) and current density value (14.3; 28.7; 57.3 mA cm-2) / Mestrado / Tecnologia e Inovação / Mestra em Tecnologia
38

The effects of artificial lighting on activity of Namib Desert bats (Mammalia: Chiroptera)

Curtis, Angela Lesley 12 1900 (has links)
The large-scale use of artificial light throughout the night has occurred in the last 100 years and continues to increase globally. Artificial light impacts many animal and plant taxa. The effects of artificial light on bats is species specific. The Namib Desert in Namibia is still relatively dark but subject to the same drivers of increasing development and urbanization that have increased the spread of artificial light globally. This study investigated the effects of the introduction of ultraviolet, yellow and white artificial light on the activity of bats in a rural environment with minimal development in the Namib Desert. Four sites, 100 m apart, had one light and one bat detector each. The fourth light was a dark control. Each site was sampled four times by each light type. Bat activity was recorded by the bat detectors. Eight bat species were recorded during the experiment. Activity increased for open air and clutter-edge foraging species analysed. Broadband white light caused the highest increases in activity followed by yellow light when compared with the dark control site. Ultraviolet light caused the lowest increases in activity contrary to expectations. / Mengwaga ye 100 ya go feta go bile le koketšego ye kgolo ya tšhomišo ya seetša sa maitirelo bošego ka moka. Setlwaedi se se ata kudu lefaseng ka moka go feta pele, gomme se ama diphoofolo tše ntši le mehuta ya dimela. Leganata la Namib go la Namibia gabotse le sa ntše le swiswetše, eupša le ka fase ga dikgontšhi tša go oketša tlhabollo le toropofatšo tšeo di hlotšego koketšego tšhomišong ya seetša sa maitirelo lefaseng ka bophara. Dikhuetšo tša seetša sa maitirelo go memankgagane di fapana go ya ka mohuta. Nyakišišo ye e nyakišišitše dikhuetšo tša tsebagatšo ya seetša sa maitirelo sa go phadima, serolwane le se sešweu go modiro wa memankgagane ka tikologong ya nagaselegae ya go ba le tlhabollo ye nyane ka Leganateng la Namib. Seetša se setee le tithekethara e tee ya mankgagane di hlomilwe go le lengwe le le lengwe la mafelo a mane, a go arogantšhwa ka 100 m. Seetša sa bone se be se le taolo ya leswiswi. Lefelo le lengwe le le lengwe le dirilwe mohlala makga a mane ka mohuta wo mongwe le wo mongwe wa seetša. Modiro wa mankgagane e rekotilwe ka ditithekethara tša mankgagane. Mehuta ya mankgagane ye seswai e rekotilwe nakong ya eksperimente. Modiro wa mehuta ya sebakabakeng le ya go sela thobekgeng ye e sekasekilwego e oketšegile. Seetša se sešweu sa porotepente se hlotše dikoketšego tša modiro, sa latelwa ke seetša se se serolwane, ge se bapetšwa le lefelo la taolo ya leswiswi. Go fapana le ditetelo, seetša sa go phadima se hlotše dikoketšego tša fasefase modirong. / School of Environmental Sciences / M. Sc. (Nature Conservation)
39

Ultraviolet Light-Induced Regulation of Transcription and Translation, COX-2 Expression and Noncanonical NF-κB Activation

Carpenter, Oliver L. January 2013 (has links)
No description available.
40

Extreme-ultraviolet light generation in plasmonic nanostructures / Plasmonic enhancement of high harmonic generation revisited

Sivis, Murat 13 November 2013 (has links)
No description available.

Page generated in 0.1198 seconds