• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • Tagged with
  • 14
  • 13
  • 13
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Observations et modélisation numérique de l'influence des conditions de surface sur la dégradation du pergélisol dans la vallée Tasiapik à Umiujaq (Nunavik, Québec)

Perreault, Julie 18 February 2021 (has links)
Dans le contexte actuel de réchauffement climatique, les impacts de ces changements climatiques se font déjà ressentir dans les régions subarctiques telles qu’à Umiujaq au Nunavik (Québec) dont notamment la dégradation du pergélisol. Les processus physiques à l’origine de cette dégradation demeurent peu documentés. L’objectif principal du projet de recherche est d’étudier l’impact de la variabilité spatiale des conditions de surface sur la dégradation du pergélisol. Pour atteindre cet objectif, des photographies infrarouges de buttes de pergélisol à Umiujaq ont été prises pour identifier les conditions de surface caractéristiques du site d’étude. Selon ces différentes conditions, trente-cinq sondes autonomes de température ont été enfouies sous la surface du sol pour assurer un suivi horaire des variations de température de surface. Les relations entre les températures de surface et la température de l’air montrent que les conditions de surface contrôlent de manière significative la transmission de la chaleur à l’interface air-sol et le régime thermique du pergélisol permettant l’identification d’une séquence de dégradation du pergélisol (en ordre décroissant : ostioles, lichens et mousses, développement de mares de themokarst et arbustation). Les suivis des températures de surface et de l’air ont été utilisés pour contraindre un modèle numérique qui simule la transmission de chaleur par conduction et advection dans le pergélisol. Ce modèle a été soumis à une période d’entraînement et à la variabilité climatique récente. Différents scénarios de réchauffement climatique, de développement d’une mare de thermokarst ainsi que d’invasion de la végétation ont été ensuite considérés. Les résultats des simulations démontrent que la modification des conditions de surface peut entraîner une augmentation des températures de la butte de pergélisol jusqu'à 1,5 °C, la migration de la base du pergélisol jusqu’à 4 m vers la surface et la diminution de l’extension de la butte de pergélisol jusqu’à 7 m. / In the current context of global warming, the impacts of climate change including permafrost degradation are already being felt in subarctic regions such as Umiujaq in Nunavik (Quebec). The physical processes causing this degradation are poorly documented. The main objective of the research project is to study the impact of the spatial and temporal variability of surface conditions on heat transfer at the airsurface interface as well as on permafrost degradation. To achieve this objective, infrared photographs of several permafrost mounds at Umiujaq were taken to identify the characteristic surface conditions of the study site. Based on these different conditions, thirty-five autonomous temperature probes were buried below the ground surface to monitor surface temperature variations on an hourly basis. The relationships between the surface temperatures and air temperature show that the surface conditions significantly control heat transfer at the air-surface interface as well as the thermal regime of the permafrost allowing the identification of a permafrost degradation sequence (in decreasing order : mudboils, lichens and mosses, development of thermokarst lakes and shrubbification). This monitoring of air and surface temperatures was used to constrain a numerical model of advectiveconductive heat transfer in permafrost terrain. A training period was first considered and then the observed climate variability was reproduced in the model. Different scenarios of global warming, formation of a thermokarst pond and vegetation invasion were considered. Simulated results show that changes in surface condition can result in an increase of temperatures in the permafrost mound up to 1.5 °C, the migration of the permafrost base up to 4 m towards the surface and a decrease in the extent of the permafrost mound up to 7 m.
2

Analysis of the surface energy budget of a low-Arctic valley within the forest-tundra ecotone

Lackner, Georg 28 January 2022 (has links)
L'écotone forêt-toundra (EFT) est un environnement où la forêt boréale amorce une transition vers la toundra arctique. Longue de 13 400 km, cette interface forme probablement la plus grande zone de transition sur Terre et couvre de grandes parties du nord de l'Eurasie et de l'Amérique du Nord. Sa taille en fait d'ailleurs un facteur d'importance grandissante avec le réchauffement global du climat sur Terre. En effet, les propriétés fort différentes de la forêt et de la toundra se font sentir sur le bilan énergétique de surface, qui décrit les échanges d'énergie et de masse à l'interface sol-atmosphère. En somme, ce bilan reflète la répartition du rayonnement net en flux de chaleur sensible et latente, ainsi qu'en flux de chaleur dans le sol. Jusqu'à présent, ce bilan a été peu étudié dans l'EFT, bien que son rôle crucial de couplage entre l'atmosphère et le sol soit essentiel pour le régime thermique et hydrologique de la surface terrestre. L'objectif de cette étude est d'analyser le bilan d'énergie de surface d'un site du Bas-Arctique dans l'EFT, sur la côte est de la baie d'Hudson à l'est du Canada, en été et en hiver. Pour ce faire, nous utilisons les données recueillies par une tour micrométéorologique utilisant l'approche de la covariance des tourbillons. Le site choisi est la vallée Tasiapik, d'une longueur de 4.5 km, où les parties hautes de la vallée sont couvertes par une toundra arbustive qui se transforme en forêt boréale vers les parties basses de la vallée. De plus, nous comparons les observations recueillies avec des simulations produites à l'aide des modèles de surface ISBA et SVS pour l'été et du modèle de neige Crocus en hiver. La comparaison avec ces modèles de surface est particulièrement importante comme ils sont utilisés avec des modèles atmosphériques pour générer des prévisions météorologiques et des projections climatiques. En été, nous avons constaté que 23% du rayonnement net était converti en flux de chaleur latente sur notre site, 35% en flux de chaleur sensible et environ 15% en flux de chaleur du sol. Ces résultats contrastent avec ceux de six sites FLUXNET répartis dans l'Arctique, où la majeure partie du rayonnement net sert à alimenter le flux de chaleur latente, et ce, même s'ils ont tous une précipitation annuelle bien inférieure à celle du site étudié. Nous attribuons ce comportement à la conductivité hydraulique élevée du sol (présence de sédiments littoraux et intertidaux), typique de ce que l'on trouve dans les régions côtières de l'est de l'Arctique canadien. Les modèles de surface terrestre ISBA et SVS surestiment la teneur en eau de surface de ces sols, mais parviennent à simuler avec précision les flux de chaleur turbulents, notamment le flux de chaleur sensible et, dans une moindre mesure, le flux de chaleur latente. En hiver, la couverture neigeuse modifie complètement le bilan énergétique de surface. Les pertes par rayonnement infrarouge sont en grande partie compensées par le flux de chaleur sensible, tandis que le flux de chaleur latente est minime. À la surface du couvert, le flux de chaleur dans la neige est similaire en amplitude au flux de chaleur sensible. Comme la couverture neigeuse stocke très peu de chaleur, l'amplitude du flux de chaleur dans la neige est comparable au flux de chaleur dans le sol. Dans l'ensemble, Crocus est en mesure de reproduire le bilan énergétique observé, mais démontre quelques défaillances lors de la simulation des flux de chaleur turbulents à un pas de temps horaire en conditions atmosphériques stables. Comme les deux types de couvert végétal dans l'EFT, la toundra et la forêt, ont un effet contrasté sur la couverture neigeuse au sol, nous avons analysé les propriétés du manteau neigeux à chacun des deux environnements. Nous avons à nouveau eu recours au modèle de neige Crocus pour simuler les propriétés de la neige sur les deux sites. D'abord, nos observations montrent que la hauteur et la densité de la neige diffèrent considérablement d'un site à l'autre. Sur le site forestier, la neige est environ deux fois plus épaisse qu'au site de toundra, et la densité diminue du sol vers la surface de la neige, alors que le contraire est observé sur le site de toundra. Crocus n'est pas en mesure de reproduire ces profils de densité dans sa configuration standard. En ajustant le paramétrage de la densité de la neige fraîche, de la compaction en présence de végétation et la neige soufflée, nous arrivons à simuler des profils comparables aux observations. Nous émettons l'hypothèse que le transport de la vapeur d'eau est le mécanisme dominant qui façonne le profil de densité sur le site de la toundra, alors qu'une combinaison de la compaction due au poids des couches superficielles et du transport de la vapeur d'eau est responsable du profil de densité sur le site forestier. Ce processus n'est pas inclus dans Crocus et les ajustements compensent partiellement ce fait et sont, dans une certaine mesure, spécifiques au site, ce qui complique l'application à plus grande échelle des modifications mises en œuvre ici. / The forest-tundra ecotone (FTE) is an environment where the boreal forest begins a transition to the arctic tundra. With an extent of about 13,400 km, this interface is probably the largest transition zone on Earth and covers large parts of northern Eurasia and North America. Its size makes it a factor of increasing importance for the Earth's climate with global warming. Indeed, the very different properties of forest and tundra are reflected in the surface energy balance, which describes the energy and mass exchanges at the soil-atmosphere interface. In short, this balance reflects the distribution of net radiation into sensible and latent heat fluxes, as well as heat fluxes into the soil. To date, this balance has been little studied in the FTE, despite its crucial role in coupling the atmosphere and the soil which is essential for the thermal and hydrological regime of the land surface. The objective of this study is to analyze the surface energy balance at a Low-Arctic site in the FTE, on the east coast of Hudson Bay in eastern Canada, in summer and winter. To do so, we use data collected by a micrometeorological tower using the eddy covariance approach. The study site is the Tasiapik valley, 4.5 km long, where the upper parts of the valley are covered by shrub tundra that transforms into a boreal forest towards the lower parts of the valley. In addition, we compare the collected observations with simulations produced using the ISBA and SVS surface models in summer and the Crocus snow model in winter. The comparison with surface models is particularly important as they are used with atmospheric models to generate weather forecasts and climate projections. In summer, we found that 23% of the net radiation was converted to latent heat flux at our site, 35% to sensible heat flux, and about 15% to ground heat flux. This contrasts with six FLUXNET sites across the Arctic, where most of the net radiation is used to drive the latent heat flux, even though they all have much lower annual precipitation than our study site. We attribute this behavior to the high hydraulic conductivity of the soil (presence of littoral and intertidal sediments), typical of the coastal regions of the eastern Canadian Arctic. The ISBA and SVS land surface models overestimate the surface water content of these soils, but are able to accurately simulate turbulent heat fluxes, including sensible heat flux and, to a lesser extent, latent heat flux. In winter, the snow cover completely changes the surface energy balance. Energy losses due to longwave radiation are largely offset by the sensible heat flux, while the latent heat flux is minimal. At the surface of the snow cover, the heat flux in the snow is similar in magnitude to the sensible heat flux. As the snow cover stores very little heat, the magnitude of the heat flux in the snow is comparable to the heat flux in the ground. Overall, Crocus is able to reproduce the observed energy balance, but shows some shortcomings when simulating turbulent heat fluxes at an hourly time step under stable atmospheric conditions. Since the two vegetation types in the FTE, tundra and forest, have a contrasting effect on the snow cover on the ground, we analyzed the snowpack properties at each of the two environments. Again, we used the Crocus snow model to simulate snow properties at both sites. First, our observations show that snow height and density differ significantly between the two sites. At the forest site, the snow is about twice as thick as at the tundra site, and the density decreases from the ground to the snow surface, while the opposite is observed at the tundra site. Crocus is not able to reproduce these density profiles in its standard configuration. By adjusting the density settings for fresh snow, compaction in the presence of vegetation and blown snow, we are able to simulate profiles comparable to the observations. We hypothesize that water vapor transport is the dominant mechanism shaping the density profile at the tundra site, while a combination of compaction due to the overburden weight and water vapor transport is responsible for the density profile at the forest site. This process is not included in Crocus and the adjustments partially compensate for this and are to some extent site-specific, making it difficult to apply the modifications implemented here on a larger scale.
3

Étude hydrogéochimique des eaux souterraines dans un environnement pergélisolé en voie de dégradation, Umiujaq, Nunavik, Québec

Cochand, Marion 30 September 2019 (has links)
Les effets des changements climatiques sont particulièrement importants dans les régions arctiques et subarctiques. L’augmentation de la température de l’atmosphère entraine notamment le réchauffement du pergélisol qui perd en épaisseur et en couverture spatiale. Cette dégradation a des conséquences sur les écosystèmes, le paysage, la stabilité des sols, des bâtiments et des infrastructures ainsi que sur les populations locales et sur leur mode de vie. La dégradation du pergélisol conduira probablement à la perte de la couche confinante formée par le pergélisol favorisant ainsi la recharge des aquifères et modifiant les interactions entre les eaux de surface et les eaux souterraines. Cependant, l’impact de cette dégradation sur la qualité et la disponibilité des eaux souterraines demeure en grande partie inconnu. Cette thèse a été motivée par le manque d’informations sur les eaux souterraines en région de pergélisol discontinu, par les changements environnementaux rapides liés au réchauffement climatique et par le potentiel de l’eau souterraine comme ressource en eau potable pour, entre autres, les communautés du Nunavik (Québec, Canada). Ce projet se concentre sur la compréhension des écoulements et sur la qualité de l’eau souterraine dans la vallée de Tasiapik, un petit bassin versant en zone de pergélisol discontinu proche d’Umiujaq au Nunavik. Cette étude se base sur une analyse approfondie de l’hydrogéochimie des eaux souterraines, des eaux de surface, des précipitations et du pergélisol riche en glace. Cette thèse est divisée en deux parties. La première partie (chapitre 2) est une revue de la littérature scientifique existante sur l’hydrogéochimie des eaux souterraines. La seconde partie (chapitre 3) présente l’étude hydrogéochimique des eaux souterraines dans la vallée de Tasiapik. Cette thèse est complétée par une introduction générale (chapitre 1), une synthèse (chapitre 4) et une conclusion (chapitre 5). / La première partie, chapitre 2, résume l’état actuel des connaissances sur l’hydrogéochimie des eaux souterraines dans les régions affectées par le pergélisol et sur les impacts potentiels de la dégradation du pergélisol sur la qualité des eaux souterraines. Les caractéristiques hydrogéochimiques des eaux souterraines dans les zones de pergélisol dépendent des mêmes réactions que dans les régions où il n’y a pas de pergélisol. Cependant, le pergélisol agit comme une couche confinante qui peut influencer la chimie des eaux souterraines en empêchant la recharge directe des aquifères et en augmentant le. Un temps de résidence, favorisant ainsi plus long augmente également les interactions eau-roche. Un des impacts majeurs des changements climatiques sur les eaux souterraines sera associé à la perte de cette couche confinante. Les futures études en lien avec l’hydrogéologie en zone de pergélisol devraient donc inclure une meilleure caractérisation hydrogéochimique insitu afin de mieux évaluer l’impact du réchauffement climatique sur les eaux souterraines. La deuxième partie, chapitre 3, utilise l’hydrogéochimie comme outil pour mieux comprendre la dynamique de la recharge et développer un modèle conceptuel pour l’écoulement des eaux souterraines dans la vallée de Tasiapik. Cette étude se base sur l’analyse d’échantillons de précipitations, d’eau souterraine, de glace du pergélisol, de lacs de thermokarst et de cours d’eau. L’hydrogéochimie des eaux souterraines dans le bassin versant est typique d’eaux jeunes, avec une faible minéralisation. Cela implique des circulations et des temps de résidence relativement courts. Ce jeu de données hydrogéochimiques pourra servir de référence pour documenter les impacts des changements climatiques sur le système hydrogéologique et l’interprétation qui en est tirée permettra de mieux comprendre la dynamique des eaux souterraines d’aquifères en régions froides. / L’eau souterraine dans le bassin versant d’Umiujaq répond aux normes de qualité canadiennes et québécoises pour l’eau potable. Cependant, la distance entre la vallée et la communauté rendent le site peu propice pour l’alimentation en eau d’Umiujaq. Ces résultats sont encourageants pour l’utilisation d’eau souterraine comme ressource ailleurs au Nunavik et dans les régions circumpolaires. La vulnérabilité de cette ressource potentielle doit néanmoins être considérée et la délimitation de zones de protections en fonction de l’état du pergélisol doit être envisagée pour éviter toute contamination de cette ressource fragile. En résumé, cette étude a apporté des données détaillées sur l’hydrogéochimie des eaux souterraines en zone de pergélisol discontinu qui combinées à des modèles hydrogéologiques et thermiques, ont permis de mieux comprendre les interactions entre les eaux souterraines et le pergélisol dans un environnement vulnérable soumis à des pressions économiques et climatiques. / The first part, Chapter 2, provides a summary of the current state of knowledge of groundwater hydrogeochemistry in permafrost-affected areas and reviews the potential impacts of permafrost degradation on groundwater quality. The hydrogeochemical characteristics of groundwater in permafrost areas depend on the same reactions as in permafrost-free areas. As a confining layer, permafrost can influence groundwater chemistry by limiting recharge and exchanges between the soil, surface water and groundwater. Longer residence times also increase water-rock interactions. One of the most important impacts of climate change on groundwater will probably be associated with the loss of the confining layer. In permafrost areas, there is a general lack of detailed hydrogeological studies which use direct groundwater sampling. Future studies related to hydrogeology in permafrost areas should therefore include better in-situ hydrogeochemical characterization to assess the potential for using groundwater as the climate warms. The second part, Chapter 3, uses hydrogeochemistry as a tool to better understand recharge dynamics and to develop a conceptual model for groundwater flow in the Tasiapik Valley, Umiujaq. This study is based on the analysis of samples taken from precipitation, groundwater, ice from permafrost mounds and from thermokarst lakes and streams. Groundwater hydrogeochemistry in the watershed is typical for young waters, with low mineralization. This implies relatively short flow paths (on the order of 100-1000 m) and short residence times. This hydrogeochemical dataset will provide a reference for documenting the impacts of climate change on the hydrogeological system and will improve our understanding of groundwater dynamics in cold-region aquifers. / Groundwater in the Umiujaq watershed meets Canadian and Quebec drinking water quality standards. However the distance between the valley and the Umiujaq community makes the site unfavourable as a local water supply. These results are promising for the use of groundwater as a water supply elsewhere in Nunavik and in circumpolar regions. The vulnerability of this potential resource must nevertheless be taken into account and the delineation of protection zones considering the state of permafrost must be considered to avoid contamination of this fragile resource. Finally, this study provides detailed baseline data on groundwater hydrogeochemistry in a discontinuous permafrost zone. This data, combined with hydrogeological and thermal models, will provide a better understanding of the interactions between groundwater and permafrost in a sensitive environment undergoing significant climate change and economic development. / Arctic and subarctic regions are particularly vulnerable to climate change. Higher air temperatures, for example, lead to permafrost warming which decreases its thickness and spatial coverage. Permafrost degradation has consequences on ecosystems, landscapes, the stability of soils, buildings and infrastructure, as well as on local populations and their way of life. The effect of permafrost degradation on groundwater is likely to result in the loss of the confining layer formed by permafrost, thereby promoting aquifer recharge and modifying interactions between surface water and groundwater. However, the effect of permafrost degradation on groundwater quality and availability is still largely unknown. With increasing concerns of rapid global warming, this thesis was motivated by the lack of information on groundwater in discontinuous permafrost regions and the potential of groundwater as a drinking water resource for communities in Nunavik (Quebec, Canada). This project focuses on understanding groundwater flow and groundwater quality in the Tasiapik Valley, a small watershed located in a discontinuous permafrost zone near Umiujaq, Nunavik, Quebec. Insights into the hydrogeological system are provided by conducting a comprehensive hydrogeochemical analysis of groundwater, surface water, precipitation and water contained in ice-rich permafrost. The thesis is divided into two parts. The first part (Chapter 2) presents a review of the existing scientific literature on groundwater hydrogeochemistry. The second part (Chapter 3) presents a specific hydrogeochemical study of groundwater in the Tasiapik Valley. The thesis also includes a general Introduction (Chapter 1), Synthesis (Chapter 4) and Conclusions (Chapter 5).
4

Étude des conditions météorologiques favorables au déclenchement d'avalanches de neige par l'entremise d'appareils photographiques automatisés dans la région d'Umiujaq, Nunavik

Grenier, Jérémy 19 July 2022 (has links)
La croissance démographique récente au Nunavik a amené l'expansion de certains villages nordiques près de zones de relief propice au déclenchement d'avalanches de neige tant à l'hiver qu'au printemps. Dans l'optique de développer une méthode de prévision précoce des avalanches au Nunavik, la surveillance des versants en contexte périglaciaire est primordiale. Les objectifs principaux de cette recherche sont donc de caractériser les événements avalancheux survenus de 2017 à 2020 sur le versant sud-ouest de la vallée Tasiapik (Umiujaq, Nunavik) et d'identifier les conditions météorologiques favorables à leur déclenchement. Pour ce faire, nous avons utilisé des appareils photographiques automatisés qui affichent une valeur de température sur chaque image capturée. Les données de température extraites sur près de 39 500 photographies ont été comparées aux données de température de deux stations météorologiques à proximité. Les résultats ont démontré que les appareils photographiques sont précis pour la mesure de la température à la fin de l'automne et à l'hiver. Au printemps et en été, ils ont une grande propension à surestimer la température. Les erreurs de mesure de température des appareils photographiques ont été statistiquement liées à la couverture nuageuse et à la radiation solaire incidente moyenne journalière. Par ailleurs, les photographies ont permis de caractériser 130 dépôts avalancheux. Deux principaux régimes d'avalanches ont été décrits : un régime hivernal, et un régime printanier. Des analyses de régression progressive ont permis d'établir que les conditions météorologiques propices au déclenchement des avalanches hivernales sont l'augmentation de la température minimale quotidienne et les chutes de neige ≥ à 10 cm à court terme (2 à 4 jours). Au printemps, ces conditions consistent en l'accumulation de degrés-jours de fonte, l'augmentation de la température minimale quotidienne, et la hauteur du couvert nival. Deux modèles de régression logistique ont été testés. Ensemble, ces modèles ont maintenu un taux de bonne classification global de 70.21% et ont correctement identifié 45 des 79 journées avalancheuses observées dans la vallée Tasiapik de 2017 à 2020. / Recent population growth in Nunavik has led to the expansion of northern villages some of which are located near mountainous areas prone to snow avalanches releases in winter and in spring. To develop an early avalanche forecasting method in Nunavik, monitoring of slopes in a periglacial context is essential. The main objectives of this research were to characterize avalanche events that occurred from 2017 to 2020 on the southwestern slope of the Tasiapik Valley (Umiujaq, Nunavik) and to identify the meteorological conditions that were favorable to their triggering. To do so, we used automated time-lapse cameras which displayed a temperature value on each captured image. Temperature data extracted from nearly 39,500 photographs were compared to temperature data from two nearby weather stations. The results showed that the cameras were accurate in measuring temperature in the late fall and winter. In spring and summer, they have a high propensity to overestimate temperature. The temperature measurement errors of the cameras were statistically related to the observable cloud coverage and the daily average incident solar radiation. In addition, the photographs were used to characterize 130 snow avalanche deposits. Two main avalanche regimes were described: winter and spring. Stepwise regression analyses established that the meteorological conditions conducive to winter snow avalanche initiation are the increasing daily minimum air temperature and short term (2-4 days) snowfall episodes ≥ 10 cm. In spring, these conditions are the accumulation of melting degree days, the increase in daily minimum air temperature, and snow cover height. Two logistic regression models were tested. Together, the models maintained a global correct classification rate of 70.21% correctly identifying 45 of 79 avalanche days observed within Tasiapik Valley from 2017 to 2020.
5

Impact de l'avancée des arbustes sur les stocks de carbone des sols d'Umiujaq, Nunavik.

Gagnon, Mikaël 23 May 2019 (has links)
La respiration microbienne du carbone ancien stocké dans le pergélisol représente une rétroaction positive au réchauffement climatique. Toutefois, l’avancée récente des arbustes dans l’Arctique pourrait en partie compenser ces émissions, compte tenu de leur biomasse supérieure à celle de la végétation de la toundra et à la litière qui s’accumule. Il est cependant difficile de quantifier ce puits de carbone puisque la minéralisation concomitante du carbone ancien rend l’attribution des changements de la teneur en carbone des sols incertaine. Dans cette étude, la contribution des arbustes au réservoir de carbone terrestre est quantifiée dans un site au Nunavik, pour lequel les teneurs en carbone ancien des sols sont parmi les plus faibles de la région Arctique. Nous rapportons que l’avancée des arbustes Betula gladulosa Michx. dans la toundra lichénique augmente les stocks de carbone terrestre de 3.9 ± 1.3 kg m-2. Dans les milieux plus humides, les arbustes massifs et le remplacement des lichens par des mousses ont induit un gain de 6.6 ± 3.6 kg m-2 de carbone. Le puits de carbone issu de l’avancée des arbustes dans la région d’étude de 1994 à 2010 est estimé à 2.4 ± 0.8 Gg. Des études par pyrolyse couplée à la chromatographie en phase gazeuse-spectrométrie de masse (pyGCMS) démontrent que l’avancée des arbustes modifie la nature chimique du réservoir de carbone des sols. Deux biomarqueurs potentiels ont ensuite été étudiés par pyGCMS, l’acide usnique et l’acide bétulinique, dans le but de développer une méthode pour comparer la labilité de la MO des sols de la toundra de lichens à celle de la toundra arbustive de la région. Notre étude sur l’avancée des arbustes à Umiujaq indique que ce processus peut constituer un puits de carbone. Son intensité à l'échelle de l'Arctique mérite donc des études supplémentaires, mais les données obtenues sur un seul site ne peuvent pas être extrapolées à l'ensemble de l'Arctique pour évaluer si ce puits est susceptible de compenser les émissions de carbone ancien liées au dégel du pergélisol. / The microbial respiration of ancient carbon stored in permafrost represents a positive feedback to climate warming. However, the recent expansion of shrubs in circumpolar latitudes may partly compensate for this carbon release, due to greater biomass and litter inputs than that of tundra vegetation. Quantifying this carbon sink is challenging, as the concomitant mineralization of ancient carbon often renders the attribution of changes in soil carbon stocks uncertain. Here, we measure the contribution of shrubs to the terrestrial carbon reservoir in a Low-Arctic tundra site in Nunavik where soil ancient carbon stocks are among the lowest in the Arctic. We find that the emergence of Betula glandulosa Michx. shrubs increased the terrestrial carbon stocks by 3.9 ± 1.3 kg m-2. Further increases in carbon were mostly found along water tracks, where the more massive shrubs and the replacement of the lichen understory by mosses resulted in an addition of 6.6 ± 3.6 kg m-2 of carbon. From 1994 to 2010, we estimate the carbon sink provided by shrub expansion in our study area to be of 2.4 ± 0.8 Gg. The analysis of soil organic matter (SOM) using pyrolysis-gas chromatography-mass spectrometry (pyGCMS) revealed that this recent shrub expansion has modified the chemical nature of the soil organic carbon (SOC) reservoir. Lastly, two potential biomarkers for shrub and lichen biomass, betulinic acid and usnic acid, were studied using pyGCMS in hopes of developing a method to compare the lability of the various soil carbon pools of the region. This natural case study in Umiujaq shows that shrub expansion represents a carbon sink. However, further studies throughout the Arctic are needed to evaluate the significance of this sink with respect to permafrost ancient carbon emissions, as the result of one local study cannot be extrapolated to the entire Arctic.
6

Modélisation de l'avancée des espèces arbustives dans la région d'Umiujaq, Nunavik

Lemay, Marc-André 24 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2016-2017 / On observe présentement une augmentation du couvert arbustif à l'échelle circumpolaire, mais les déterminants de cette arbustation à l'échelle du paysage sont encore mal compris. Dans cette étude, nous avons adopté une approche de modélisation des changements de couvert afin d'identifier les variables déterminant l'augmentation du couvert arbustif à proximité d'Umiujaq, Québec. Nous avons modélisé les changements survenus entre 1990/1994 et 2010 et avons utilisé ces modèles afin de générer des prédictions sur l'augmentation du couvert arbustif. Nous avons trouvé que les arbustes tendent à coloniser plus facilement les sites à basse altitude ainsi que les pentes modérées, alors que leur couvert est plus susceptible d'augmenter à proximité de peuplements arbustifs déjà existants. Les probabilités d'arbustation prédites dans la région étaient cohérentes avec les patrons de changement inférés par les observations sur le terrain, mais pas par les changements récents de NDVI (normalized difference vegetation index, ou indice de végétation par différence normalisée) dans la région. Nos résultats indiquent que davantage de recherche est requise sur les impacts à grande échelle de l'arbustation sur les écosystèmes nordiques et sur le lien entre les changements de couvert végétal et les variations dans les indices dérivés de données de télédétection. / A circumpolar increase in shrub cover has been underway in northern ecosystems in recent decades, but the landscape-scale drivers of this shrubification are not well understood. In this study, we adopted a land cover change modelling approach to identify variables driving shrub cover increase near Umiujaq, Québec. We modelled land cover change in this area over the period 1990/1994-2010 and used these models to generate spatially explicit predictions of shrub cover increase. We found that shrubs tended to colonize low-elevation areas and moderate slopes more easily, whereas their cover was more likely to increase in the vicinity of existing shrub stands. The predicted probabilities of shrub cover increase in the region were consistent with patterns of change inferred from field observations, but not from recent local changes in NDVI (normalized difference vegetation index). Our findings warrant further research on the large-scale impacts of shrubification on ecosystem function and the link between land cover changes and variations in indices derived from remote sensing.
7

Modélisation cryohydrogéologique tridimensionnelle d'un bassin versant pergélisolé : une étude cryohydrogéophysique de proche surface en zone de pergélisol discontinu à Umiujaq au Québec Nordique

Banville, David-Roy 23 April 2018 (has links)
Une investigation cryohydrogéophysique de proche surface a été menée dans un petit bassin versant à proximité de la communauté Inuite d’Umiujaq, au Québec nordique. Cette investigation s’inscrit dans la cadre du déploiement du réseau Immatsiak, un réseau de puits d’observation des eaux souterraines en zone de pergélisol discontinu dans un contexte de changements climatiques. Le but de cette investigation est de recueillir de l’information sur la structure des dépôts quaternaires qui abritent l’aquifère, la distribution du pergélisol et la topographie du socle rocheux afin de créer un modèle cryohydrogéologique tridimensionnel (3D) du bassin versant. Ultimement, ce modèle sera utilisé pour des travaux de simulation numérique de l’écoulement de l’eau souterraine dans le bassin versant afin d’évaluer les impacts du réchauffement climatique sur cette ressource naturelle exploitable pour alimenter en eau potable les communautés Inuites. L’approche géophysique employée se base principalement sur la tomographie de polarisation provoquée, une méthode électrique bien adaptée à l’investigation de dépôts meubles en présence de sols gelés. Cependant, l’extraction d’information quantitative de cette investigation pour contraindre la construction du modèle cryohydrogéologique 3D représente un défi. Pour y parvenir, une méthodologie d’interprétation quantitative basée sur les concepts de modélisation directe et d’inversion en géophysique a été développée. Cette méthodologie fait appel aux gradients de résistivité et de chargeabilité électrique pour localiser les contacts entre les différentes unités géologiques du bassin versant étudié afin de lever certaines ambiguïtés et d’accroître l’objectivité de l’interprétation. Le recours à deux autres méthodes géophysiques complémentaires, soit le géoradar et la sismique réfraction, a permis d’accroître d’avantage l’objectivité des interprétations et d’ajouter des contraintes pour la construction du modèle cryohydrogéologique 3D. Le développement du modèle s’appuie sur une approche dite génétique qui définit un nombre restreint de géofaciès sur la base des mécanismes en jeu au moment de leur mise en place. Cette approche fournit une vision cohérente des relations stratigraphiques et des changements de propriétés physiques à l’échelle du bassin versant. Le modèle cryohydrogéologique 3D présenté dans ce mémoire est le fruit d’une synthèse de l’information tirée des investigations géophysiques, de forages, d’essais de pénétration au cône, de cartographie des dépôts de surface par photo-interprétation et d’un modèle numérique de terrain.
8

Geomorphological, ecological and thermal time phase of permafrost degradation, Tasiapik, Nunavik (Québec, Canada)

Pelletier, Maude 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2014-2015 / Six places-échantillons représentatives de la séquence temporelle écologique associée à la dégradation du pergélisol ont été sélectionnées sur un plateau silteux à pergélisol riche en glace à proximité d'Umiujaq, au Nunavik. Le présent travail a pour objectif de déterminer les changements qui se produisent dans les flux de chaleur entre les trois niveaux de l'écosystème (végétation / couverture de neige, couche active, pergélisol) ainsi que les rétroactions qui surviennent lors de la dégradation du pergélisol et à quantifier la vitesse de la transition à partir de photographies aériennes et la dendrochronologie. Pour répondre aux objectifs, la méthodologie utilisée suit le protocole du programme Adaptation et Dévelopement de l’Arctique sur le Pergélisol en Transition (ADAPT), intégrant l’analyse de données écologiques, climatiques, stratigraphiques et thermiques. Les résultats obtenus illustrent une évolution exponentielle des facteurs de dégradation du pergélisol sur une période estimée à environ 90 ans; lent durant les 60 premières années, et significativement plus rapide durant les 30 dernières années. / Six plots, representative of the regional ecological time sequence associated with permafrost degradation, were selected on a silty ice-rich permafrost plateau near Umiujaq, Nunavik. The objective of the present work is to determine the changes that occur in the flow of energy between the three layers of the ecosystem (vegetation / snow cover, active layer, permafrost) and the feedbacks that occur during the degradation of permafrost and to quantify the rate of the transition using time-lapse aerial photographs and tree ring analysis. In order to respond to these objectives, the methodology follows the ADAPT (Arctic Development and Adaptation on Permafrost in Transition) protocol, including ecological, climate, stratigraphic and thermal data analysis. The results show exponential evolution of permafrost degradation factors over a period of time of about 90 years; slowly during the first 60 years, and significantly faster during the last 30 years.
9

Tomographie électromagnétique du pergélisol près d'Umiujaq, Nunavik (Québec)

Larrivée, Éric 12 April 2018 (has links)
La télédétection des conditions physiques du pergélisol dans trois buttes de pergélisol près d'Umiujaq au Nunavik (Québec) a été réalisée à l'aide de la tomographie électromagnétique forage-forage et surface-forage. Les objectifs de ces travaux géophysiques étaient d'étudier la propagation des ondes électromagnétiques dans un milieu physique partiellement gelé et de déterminer la cryostratigraphie des buttes de pergélisol. Des antennes à géométrie cylindrique de géoradar à ondes courtes de 50, 100 et 200 MHz ont été glissées dans des regards géophysiques secs mis en place préalablement à l'étude ou utilisées en surface. La cryostratigraphie générale des buttes de pergélisol étudiées définie à partir des tomogrammes de vitesse de propagation des ondes électromagnétiques correspond à celle obtenue de forages et de l'échantillonnage de ces buttes. La résolution des tomogrammes est meilleure aux plus hautes fréquences.
10

Modelling coupled surface water-groundwater flow and heat transport in a catchment in a discontinuous permafrost zone in Umiujaq, Northern Québec

Parhizkar, Masoumeh 18 February 2021 (has links)
Les systèmes hydrogéologiques devraient réagir au changement climatique de manière complexe. En région froide, la simulation de l'effet du changement climatique nécessite un modèle hydrologique intégré de pointe. Dans cette recherche, un modèle numérique entièrement couplé en 3D a été développé pour simuler l’écoulement des eaux souterraines et le transport de chaleur dans un bassin versant dans la région d'Umiujaq, dans le nord du Québec, au Canada. Le bassin versant est situé dans une zone de pergélisol discontinue et contient une épaisse couche glaciofluviale à grains grossiers formant un bon aquifère sous une unité gélive de silts marins sensible au gel. Une étude de terrain détaillée a été réalisée pour mesurer les caractéristiques du bassin versant telles que les propriétés hydrauliques et thermiques et la distribution des unités géologiques. Trois méthodes différentes disponibles dans le logiciel PEST sont utilisées pour caler le modèle 3D par rapport aux charges hydrauliques mesurées. Les résultats ont montré que l'utilisation de méthodes de calage simplifiées, telles que la méthode de zonation, n'est pas efficace dans cette zone d'étude, qui est très hétérogène. L’utilisation d’un calage plus détaillé par les méthodes du système PEST de points pilotes a permis de mieux s’adapter aux valeurs observées. Cependant, le temps de calcul était élevé. L'effet de la condition initiale pour la simulation du transport de chaleur est étudié en appliquant une condition initiale différente au modèle. Les résultats montrent que l'inclusion du processus de démarrage dans les simulations produit des températures simulées plus stables. Les zones du modèles à des profondeurs plus élevées, en-dessous de la profondeur de pénétration des variations saisonnières de température, nécessitent des temps de simulation plus longs pour être en équilibre avec les conditions limites appliquées. Les résultats montrent que l'application de la température moyenne de surface en tant que condition limite pour la simulation du transport de chaleur donne un meilleur ajustement aux valeurs observées en été qu'en hiver. En hiver, du fait de l’épaisseur variable de la neige dans le bassin versant, l’utilisation d’une température de surface uniforme diminue la qualité de l’ajustement aux valeurs observées. L'inclusion de l'advection dans la simulation du transport de chaleur accélère le taux d'augmentation de la température. De plus, l'eau chaude qui pénètre dans le sous-sol augmente la température souterraine dans les zones de recharge. Lorsque les eaux souterraines s'écoulent, elles perdent de l'énergie thermique. Par conséquent, le taux d’augmentation de la température dans les zones de décharge est inférieur à celui des zones de recharge. / Groundwater systems are expected to respond to climate change in a complex way. In cold regions, simulating the effect of climate change requires a state-of-the-art integrated hydrologic model. In this research, a fully coupled 3D numerical model has been developed to simulate groundwater-surface water flow and heat transport in a 2-km² catchment in Umiujaq, Nunavik (northern Quebec), Canada. The catchment is located in a discontinuous permafrost zone. It contains a lower aquifer, consisting of a thick coarse-grained glaciofluvial layer, overlain by a frost-susceptible silty marine unit and a perched upper aquifer. Detailed field investigations have been carried out to characterize the catchment, including its hydraulic and thermal properties and the subsurface geology. Three different calibration methods using the inverse calibration code PEST were used to calibrate the 3D flow model against measured hydraulic heads, assuming a fixed distribution of low hydraulic conductivity for discontinuous permafrost blocks. Heat transfer was not considered for this calibration. Results showed that using simplified calibration methods, such as the zoning method, is not efficient in this study area, which is highly heterogeneous. Using a more detailed calibration, such as the pilot-points method of PEST, gave a better fit to observed values. However, the computational time was significantly higher. In subsequent simulations, which included heat transport, different approaches for assigning initial temperatures during model spin-up were investigated. Results show that including the spin-up process in the simulations produces more realistic simulated temperatures. Furthermore, the spin-up improves the model fit to deeper subsurface temperatures because areas of the subsurface below the depth where seasonal surface temperature variations penetrate require longer simulation times to reach equilibrium with the applied boundary conditions. Applying the annual average surface temperature as the boundary condition to the heat transport simulation provided a better fit to observed values in the summer compared to winter. During winter, because of different snow thicknesses throughout the catchment, using a uniform surface temperature results in a poor fit to observed values. v Simulations show that warm water entering the subsurface increases the subsurface temperature in the recharge areas. As groundwater flows through the subsurface, it loses thermal energy. Therefore, discharging water is cooler than recharging water. This causes the rate of temperature rise to be lower in discharge areas than in recharge areas. The modelling results have helped provide insights into 3D simulation of coupled water flowheat transfer processes. Furthermore, it will help users of cryo-hydrogeological models in understanding effective parameters in development and calibration of model to develop their own site-specific models.

Page generated in 0.0325 seconds