• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian Methods to Characterize Uncertainty in Predictive Modeling of the Effect of Urbanization on Aquatic Ecosystems

Kashuba, Roxolana Oresta January 2010 (has links)
<p>Urbanization causes myriad changes in watershed processes, ultimately disrupting the structure and function of stream ecosystems. Urban development introduces contaminants (human waste, pesticides, industrial chemicals). Impervious surfaces and artificial drainage systems speed the delivery of contaminants to streams, while bypassing soil filtration and local riparian processes that can mitigate the impacts of these contaminants, and disrupting the timing and volume of hydrologic patterns. Aquatic habitats where biota live are degraded by sedimentation, channel incision, floodplain disconnection, substrate alteration and elimination of reach diversity. These compounding changes ultimately lead to alteration of invertebrate community structure and function. Because the effects of urbanization on stream ecosystems are complex, multilayered, and interacting, modeling these effects presents many unique challenges, including: addressing and quantifying processes at multiple scales, representing major interrelated simultaneously acting dynamics at the system level, incorporating uncertainty resulting from imperfect knowledge, imperfect data, and environmental variability, and integrating multiple sources of available information about the system into the modeling construct. These challenges can be addressed by using a Bayesian modeling approach. Specifically, the use of multilevel hierarchical models and Bayesian network models allows the modeler to harness the hierarchical nature of the U.S. Geological Survey (USGS) Effect of Urbanization on Stream Ecosystems (EUSE) dataset to predict invertebrate response at both basin and regional levels, concisely represent and parameterize this system of complicated cause and effect relationships and uncertainties, calculate the full probabilistic function of all variables efficiently as the product of more manageable conditional probabilities, and includes both expert knowledge and data. Utilizing this Bayesian framework, this dissertation develops a series of statistically rigorous and ecologically interpretable models predicting the effect of urbanization on invertebrates, as well as a unique, systematic methodology that creates an informed expert prior and then updates this prior with available data using conjugate Dirichlet-multinomial distribution forms. The resulting models elucidate differences between regional responses to urbanization (particularly due to background agriculture and precipitation) and address the influences of multiple urban induced stressors acting simultaneously from a new system-level perspective. These Bayesian modeling approaches quantify previously unexplained regional differences in biotic response to urbanization, capture multiple interacting environmental and ecological processes affected by urbanization, and ultimately link urbanization effects on stream biota to a management context such that these models describe and quantify how changes in drivers lead to changes in regulatory endpoint (the Biological Condition Gradient; BCG).</p> / Dissertation
2

Risk-Based Approach to Assessment of Advanced Technologies for Conceptual Design

Asmady, Adipratnia 01 August 2016 (has links) (PDF)
The conceptual design phase of an aerospace system development program is typically characterized by short duration and relatively limited resources, yet design decisions are made that have critical implications on program risk. To address the more aggressive requirements, one of these decisions is the selection of advanced technologies. System developers need to assess advanced technologies early on, but are faced with uncertainties surrounding the potential net benefits. The concept introduced in this study is uncertainty characterization as a way to better understand the associated risk. A framework was developed to guide the interaction between the technology developer and the system developer. The objective is to gain a more comprehensive landscape of the technology options by explicitly considering the effects of uncertainty in the decision making process. This can ultimately facilitate prioritization and resource management during conceptual design. An example case of advanced wing technology was applied to the design of a high-altitude long-endurance unmanned aerial vehicle to demonstrate the implementation of the framework.
3

Quantification of the Effects of Soil Uncertainties on Nonlinear Site Response Analysis: Brute Force Monte Carlo Approach

Eshun, Kow Okyere 28 May 2013 (has links)
No description available.

Page generated in 0.141 seconds