Spelling suggestions: "subject:"site desponse 2analysis"" "subject:"site desponse 3analysis""
1 |
Effects of Site Response on the Correlation Structure of Ground Motion ResidualsMotamed, Maryam 06 February 2014 (has links)
Seismic hazard analyses require an estimate of earthquake ground motions from future events. These predictions are achieved through Ground Motion Prediction Equations, which include a prediction of the median and the standard deviation of ground motion parameters. The differences between observed and predicted ground motions, when normalized by the standard deviation, are referred to as epsilon (𝜖). For spectral accelerations, the correlation structure of normalized residuals across oscillator periods is important for guiding ground motion selection. Correlation structures for large global datasets have been studied extensively. These correlation structures reflect effects that are averaged over the entire dataset underlying the analyses. This paper considers the effects of site response, at given sites, on the correlation structure of normalized residuals. This is achieved by performing site response analyses for two hypothetical soil profiles using a set of 85 rock input motions. Results show that there is no significant difference between correlation coefficients for rock ground motions and correlation coefficients after considering the effects of site response for the chosen sites. / Master of Science
|
2 |
Dynamic Characteristics and Evaluation of Ground Response for Sands with Non-Plastic FinesArefi, Mohammad Jawad January 2014 (has links)
Deformational properties of soil, in terms of modulus and damping, exert a great influence on seismic response of soil sites. However, these properties for sands containing some portion of fines particles have not been systematically addressed. In addition, simultaneous modelling of the modulus and damping behaviour of soils during cyclic loading is desirable. This study presents an experimental and computational investigation into the deformational properties of sands containing fines content in the context of site response analysis. The experimental investigation is carried on sandy soils sourced from Christchurch, New Zealand using a dynamic triaxial apparatus while the computational aspect is based on the framework of total-stress one-dimensional (1D) cyclic behaviour of soil.
The experimental investigation focused on a systematic study on the deformational behaviour of sand with different amounts of fines content (particle diameter ≤ 75µm) under drained conditions. The silty sands were prepared by mixing clean sand with three different percentages of fines content. A series of bender element tests at small-strain range and stress-controlled dynamic triaxial tests at medium to high-strain ranges were conducted on samples of clean sand and silty sand. This allowed measurements of linear and nonlinear deformational properties of the same specimen for a wide strain range. The testing program was designed to quantify the effects of void ratio and fines content on the low-strain stiffness of the silty sand as well as on the nonlinear stress-strain relationship and corresponding shear modulus and damping properties as a function of cyclic shear strains.
Shear wave velocity, Vs, and maximum shear modulus, Gmax, of silty sand was shown to be significantly smaller than the respective values for clean sands measured at the same void ratio, e, or same relative density, Dr. However, the test results showed that the difference in the level of nonlinearity between clean sand and silty sands was small. For loose samples prepared at an identical relative density, the behaviour of clean sand was slightly less nonlinear as compared to sandy soils with higher fines content. This difference in the nonlinear behaviour of clean sand and sandy soils was negligible for dense soils. Furthermore, no systematic influence of fines content on the material damping curve was observed for sands with fines content FC = 0 to 30%.
In order to normalize the effects of fines on moduli of sands, equivalent granular void ratio, e*, was employed. This was done through quantifying the participation of fines content in the force transfer chain of the sand matrix. As such, a unified framework for modelling of the variability of shear wave velocity, Vs, (or shear modulus, Gmax) with void ratio was achieved for clean sands and sands with fines, irrespective of their fines content.
Furthermore, modelling of the cyclic stress-strain behaviour based on this experimental program was investigated. The modelling effort focused on developing a simple constitutive model which simultaneously models the soil modulus and damping relationships with shear strains observed in laboratory tests. The backbone curve of the cyclic model was adopted based on a modified version of Kondner and Zelasko (MKZ) hyperbolic function, with a curvature coefficient, a. In order to simulate the hysteretic cycles, the conventional Masing rules (Pyke 1979) were revised. The parameter n, in the Masing’s criteria was assumed to be a function of material damping, h, measured in the laboratory. As such the modulus and damping produced by the numerical model could match the stress-strain behaviour observed in the laboratory over the course of this study. It was shown that the Masing parameter n, is strain-dependent and generally takes values of n ≤ 2. The model was then verified through element test simulations under different cyclic loadings. It was shown that the model could accurately simulate the modulus and the damping simultaneously.
The model was then incorporated within the OpenSees computational platform and was used to scrutinize the effects of damping on one-dimensional seismic site response analysis. For this purpose, several strong motion stations which recorded the Canterbury earthquake sequence were selected. The soil profiles were modelled as semi-infinite horizontally layered deposits overlying a uniform half-space subjected to vertically propagating shear waves. The advantages and limitations of the nonlinear model in terms of simulating soil nonlinearity and associated material damping were further scrutinized.
It was shown that generally, the conventional Masing criteria unconservatively may underestimate some response parameters such as spectral accelerations. This was shown to be due to larger hysteretic damping modelled by using conventional Masing criteria. In addition, maximum shear strains within the soil profiles were also computed smaller in comparison to the values calculated by the proposed model. Further analyses were performed to study the simulation of backbone curve beyond the strain ranges addressed in the experimental phase of this study. A key issue that was identified was that relying only on the modulus reduction curves to simulate the stress-strain behaviour of soil may not capture the actual soil strength at larger strains. Hence, strength properties of the soil layer should also be incorporated to accurately simulate the backbone curve.
|
3 |
Evaluation of one-dimensional site response methodologies using borehole arraysZalachoris, Georgios 02 July 2014 (has links)
Numerical modeling techniques commonly used to compute the response of soil and rock media under earthquake shaking are evaluated by analyzing the observations provided by instrumented borehole arrays. The NIED Kik-Net database in Japan is selected as the main source of borehole array data for this study. The stiffness of the site and the availability of high intensity motions are the primary factors considered towards the selection of appropriate Kik-Net borehole arrays for investigation. Overall, 13 instrumented vertical arrays are investigated using over 750 recorded ground motions characterized by low (less than 0.05 g) to high (greater than 0.3 g) recorded peak ground accelerations at the downhole sensor. Based on data from the selected borehole arrays, site response predictions using 1-D linear elastic (LE) analysis, equivalent linear (EQL) analysis, equivalent linear analysis with frequency-dependent soil properties (EQL-FD), and fully nonlinear analysis (NL) are compared with the borehole observations. Initially, the low intensity motions are used to evaluate common assumptions regarding 1-D site response analysis. First, we identify the borehole wavefield best simulating the actual boundary condition at depth by comparing the theoretical linear-elastic (LE) and observed responses. Then, we identify the best-fit small-strain damping profiles that can incorporate the additional in-situ attenuation mechanisms. Finally, we assess the validity of the one-dimensional modeling assumption. Our analyses indicate that the appropriate boundary condition for analysis of a borehole array depends on the depth of the borehole sensor and that, for most of the considered vertical arrays, the one-dimensional assumption reasonably simulates the actual wave propagation pattern. In the second part of this study, we evaluate the accuracy of the EQL, EQL-FD and NL site response methods by quantifying the misfit (i.e., residual) between the simulations and observations at different levels of shaking. The evaluation of the performance of the theoretical models is made both on a site-by-site basis and in an aggregated manner. Thereafter, the variability in the predicted response from the three site response methods is assessed. Comparisons with the observed responses indicate that the misfit of simulations can be significant at short periods and large strains. Moreover, all models seem to be characterized by the same level of variability irrespectively of the level of shaking. Finally, several procedures that can be used to improve the accuracy of the one-dimensional EQL, EQL-FD and NL site response analyses, are investigated. First, an attempt to take into account the shear strength of the soil materials at large shear strains is made. Additionally, several modifications to the EQL-FD approach are proposed. The proposed modifications are evaluated against recordings from the borehole arrays. Our analyses indicate that the accuracy of the theoretical models can be, partly, increased by incorporating the proposed modifications. / text
|
4 |
Quantification of Uncertainties for Conducting Partially Non-ergodic Probabilistic Seismic Hazard AnalysisBahrampouri, Mahdi 01 July 2021 (has links)
Estimating local site effects and modifying the uncertainty in ground motion predictions are two indispensable parts of partially non-ergodic site-specific PSHA. Local site effects can be estimated using site response simulations or recorded ground motions at the site. When such predictions are available, the aleatory variability of ground motions used in PSHA can be changed to the single station sigma value. However, in these cases, the epistemic uncertainty in predicting site effects must be incorporated into the hazard analyses. This research focuses on the challenges specific to conducting partially non-ergodic site-specific PSHA using recorded ground motions or site response analysis.
The main challenge in estimating local site effects using recorded data is whether ground motions collected in a relatively short time can be used to estimate site effects for long return period events. We first develop a database for recorded ground motions at the KiK-net array to investigate this question and use this database to develop a predictive model for the Fourier Amplitude Spectra of ground motions. The ground motion model (GMM) residuals are used to investigate the stability of site terms across different tectonic regimes. We observe that empirical site terms are stable across different tectonic regimes. This observation allows the use of ground motions from any tectonic regime (whether they belong to the tectonic regime that controls the hazard or not) to estimate local site effects. Moreover, in Fourier amplitude, site effects are not dependent on event magnitude and source to site distance; therefore, estimates of site effects from low magnitude events can be easily extrapolated to larger events. The Fourier amplitude GMM developed in this study adds to the library of Fourier amplitude models to be used in future partially non-ergodic site-specific PSHAs.
In practice, one of the most common tools for simulating wave propagation is 1-D site response analysis. Two central assumptions in 1-D site response analysis are that the soil profile is comprised of horizontal soil layers of infinite extent and that the vertically propagating SH-waves control the horizontal component of ground motion. SH-waves tend to propagate vertically near the surface because as earthquake waves hit softer layers traveling from the source to the site, they refract until the path becomes steeply inclined. The validity of both assumptions in 1-D site response depends on the geological setting at the site and the geology between the earthquake source and the site, raising the question of which sites are suitable for 1-D site response analysis and what the model error in 1-D site response analysis is. We use the GMM developed for FAS to estimate observed and empirical site terms. The empirical site effects are then compared with the theoretical site effects to determine whether sites are amenable to 1-D site response analyses, and to quantify the model error in the analyses. / Doctor of Philosophy / It is impossible to predict future earthquake-induced ground motions due to randomness in the process and a lack of knowledge. In fact, there are significant uncertainties not only in predicting the location, time, and magnitude of a future earthquake but also in predicting the intensity of ground motion induced by a given future earthquake. Therefore, assessing the safety of the human environment against earthquake hazards requires a method that considers all sources of uncertainties. To this end, Earthquake Engineers have developed Probabilistic Seismic Hazard Analysis(PSHA) framework. Structural engineers use the results of PSHA to design a new structure or assess the safety of an existing building. The accuracy of PSHA estimations leads to designs that are both safe and cost-efficient. The distribution of possible ground motions induced by a given earthquake scenario significantly controls the result of PSHA. This distribution should consider the effect of source, source to site path, and local site effects. This research focuses on improving PSHA results by estimating local site effects using recorded ground motions or simulating wave propagation in the site.
In estimating local site effects using recorded data, the local site effect observed in ground motions collected in a relatively short time window is used to estimate hazards from all scenarios. However, the collected ground motions usually belong to frequent low magnitude events that are different from large magnitude events that control the hazard. This difference requires either using a measure of local site effect that is independent of the magnitude and distance of the earthquake or considering the effect of magnitude and distance on the local site effect estimate. Moreover, since frequent events sample different sources and paths than large events, we need to make sure the local site effect is consistent across different sources and paths. This research develops Ground Motion Models(GMMs) for Fourier amplitude, a linear function of ground motion times series, using Japanese ground motions. The ratio of Fourier amplitude at the surface over bedrock is a measure of local site effect that is not dependant on magnitude and distance. The model is then used to see if the trade-off between source and site effect and path and site effect is significant or not.
In practice, one of the most common tools for simulating wave propagation is 1-D site response analysis. Two central assumptions in 1-D site response analysis are that the soil profile comprises horizontal soil layers of infinite extent and that the vertically propagating horizontal shear waves (SH-waves) control the horizontal component of ground motion. SH-waves tend to propagate vertically near the surface because as earthquake waves hit softer layers traveling from the source to the site, they refract until the path becomes vertically inclined. The validity of both assumptions in 1-D site response depends on the geological setting at the site and the geology between the earthquake source and the site, raising the question of which sites are suitable for 1-D site response analysis and what the model error in 1-D site response analysis is. We use the GMM developed for FAS to estimate empirical local site effects. The empirical site effects are then compared with the theoretical site effects to determine whether sites are amenable to 1-D site response analyses and quantify the model error in the analyses.
|
5 |
Comparison of seismic site response analysis and downhole array recordings for stiff soil sitesFaker, Jeremy Stuart 12 September 2014 (has links)
Accurately predicting surface ground motions is critical for many earthquake engineering applications. Equivalent-linear (EQL) site response analysis is a numerical technique used to compute surface ground motions from input motions at bedrock using the site-specific dynamic soil properties. The purpose of this study was to investigate the accuracy of EQL site response analysis for stiff soil sites by comparing computed and observed transfer functions and response spectral amplification.
The Kiban Kyoshin network (KiK-net) in Japan is a seismograph network consisting of downhole array sites with strong-motion accelerometers located at the ground surface and at depth. Recorded motions and shear wave velocity profiles are available for most sites. Observed transfer functions and response spectral amplification were computed for 930 individual seismic recordings at 11 stiff soil KiK-net sites. Computed transfer functions and response spectral amplification were calculated from EQL site response analysis by specifying the KiK-net base sensor motion as the input motion. Sites were characterized using the measured shear wave velocity profiles and nonlinear soil properties estimated from empirical models. Computed and observed transfer functions and response spectral amplification were compared at different levels of strain for each site. The average difference between the observed and computed response spectral amplification across the 11 sites were compared at different levels of strain.
Overall, there is reasonable agreement between the computed and observed transfer functions and response spectral amplification. There is agreement between the computed and observed site periods, but with over-prediction of the computed response at the observed site periods. Higher modes often computed by the theoretical model were not always observed by the recordings. There is very good agreement between the computed and observed transfer functions and response spectral amplification for periods larger than the site periods. There is less agreement between the computed and observed transfer functions and response spectral amplification for periods less than the site periods. There is mostly over-prediction of the response spectral amplification at these periods, although some under-prediction also occurred. Across all 11 sites the predicted spectral amplification is within +/-20% at shear strains less than 0.01%. At shear strains between approximately 0.01 and 0.03%, the spectral amplification is over-predicted for these sites, in some instances by as little as 5% and in other instances by a factor of 2 or more. / text
|
6 |
Topographic amplification of seismic motion including nonlinear responseJeong, Seokho 13 January 2014 (has links)
Topography effects, the modification of seismic motion by topographic features, have been long recognized to play a key role in elevating seismic risk. Site response, the modification of ground motion by near surface soft soils, has been also shown to strongly affect the amplitude, frequency and duration of seismic motion. Both topography effects and 1-D site response have been extensively studied through field observations, small-scale and field experiments, analytical models and numerical simulations, but each one has been studied independently of the other: studies on topography effects are based on the assumption of a homogeneous elastic halfspace, while 1-D site response studies are almost exclusively formulated for flat earth surface conditions.
This thesis investigates the interaction between topographic and soil amplification, focusing on strong ground motions that frequently trigger nonlinear soil response. Recently, a series of centrifuge experiments tested the seismic response of single slopes of various inclination angles at the NEES@UCDavis facility, to investigate the effects of nonlinear soil response on topographic amplification. As part of this collaborative effort, we extended the search space of these experiments using finite element simulations. We first used simulations to determine whether the centrifuge experimental results were representative of free-field conditions. We specifically investigated whether wave reflections caused by the laminar box interfered with mode conversion and wave scattering that govern topographic amplification; and whether this interference was significant enough to qualitatively alter the observed amplification compared to free-field conditions. We found that the laminar box boundaries caused spurious reflections that affected the response near the boundaries; however its effect to the crest-to-free field spectral ratio was found to be insignificant. Most importantly though, we found that the baseplate was instrumental in trapping and amplifying waves scattered and diffracted by the slope, and that in absence of those reflections, topographic amplification would have been negligible. We then used box- and baseplate-free numerical models to study the coupling between topography effects and soil amplification in free-field conditions.
Our results showed that the complex wavefield that characterizes the response of topographic features with non-homogeneous soil cannot be predicted by the superposition of topography effects and site response, as is the widespread assumption of engineering and seismological models. We also found that the coupling of soil and topographic amplification occurs both for weak and strong motions, and for pressure-dependent media (Nevada sand), nonlinear soil response further aggravates topographic amplification; we attributed this phenomenon to the reduction of apparent velocity that the low velocity layers suffer during strong ground motion, which intensifies the impedance contrast and accentuates the energy trapping and reverberations in the low strength surficial layers. We finally highlighted the catalytic effects that soil stratigraphy can have in topographic amplification through a case study from the 2010 Haiti Earthquake. Results presented in this thesis imply that topography effects vary significantly with soil stratigraphy, and the two phenomena should be accounted for as a coupled process in seismic code provisions and seismological ground motion predictive models.
|
7 |
Improvements to the Assessment of Site-Specific Seismic HazardsCabas Mijares, Ashly Margot 02 September 2016 (has links)
The understanding of the impact of site effects on ground motions is crucial for improving the assessment of seismic hazards. Site response analyses (SRA) can numerically accommodate the mechanics behind the wave propagation phenomena near the surface as well as the variability associated with the input motion and soil properties. As a result, SRA constitute a key component of the assessment of site-specific seismic hazards within the probabilistic seismic hazard analysis framework. This work focuses on limitations in SRA, namely, the definition of the elastic half-space (EHS) boundary condition, the selection of input ground motions so that they are compatible with the assumed EHS properties, and the proper consideration of near-surface attenuation effects. Input motions are commonly selected based on similarities between the shear wave velocity (Vs) at the recording station and the materials below the reference depth at the study site (among other aspects such as the intensity of the expected ground motion, distance to rupture, type of source, etc.). This traditional approach disregards the influence of the attenuation in the shallow crust and the degree to which it can alter the estimates of site response. A Vs-κ correction framework for input motions is proposed to render them compatible with the properties of the assumed EHS at the site. An ideal EHS must satisfy the conditions of linearity and homogeneity. It is usually defined at a horizon where no strong impedance contrast will be found below that depth (typically the top of bedrock). However, engineers face challenges when dealing with sites where this strong impedance contrast takes place far beyond the depth of typical Vs measurements. Case studies are presented to illustrate potential issues associated with the selection of the EHS boundary in SRA. Additionally, the relationship between damping values as considered in geotechnical laboratory-based models, and as implied by seismological attenuation parameters measured using ground motions recorded in the field is investigated to propose alternative damping models that can match more closely the attenuation of seismic waves in the field. / Ph. D.
|
8 |
Liquefaction Case Histories From Oceano, California During The 2003 San Simeon EarthquakeBrake, Hayden 01 June 2024 (has links) (PDF)
On December 22nd, 2003, the Mw=6.5 San Simeon earthquake occurred 12 kilometers east of San Simeon, California, causing damage to buildings, roads, and other infrastructure throughout the central coast. The community of Oceano, 80 kilometers southeast of the epicenter, experienced damage to foundations, roads, and utilities due to liquefaction and lateral spreading. The unique geologic environment in Oceano caused a local amplification of ground motions, liquefaction, and lateral spreading. This study entailed developing ten liquefaction case histories from Oceano during the 2003 San Simeon earthquake. Four of the ten case histories are liquefaction cases and six are non-liquefaction cases, with Cyclic Stress Ratio (CSR) ranging from 0.17 to 0.43 and average corrected cone tip resistance (qc1) ranging from 2.67 to 23.53 kN/m^2. Subsurface data used to represent the geologic conditions in each case history included CPT soundings provided by the United States Geological Survey (Holzer et al., 2004). Ground motion data used to represent the earthquake conditions in each case history included the nearest relatively free field ground motion recordings from the SLO Rec Center Seismic Monitoring Station provided by the PEER strong motion center (PEER Ground Motions Database, 2003). CPT soundings were grouped together to develop representative case histories, allowing for averaging of parameters. The stratum with the single highest potential for liquefaction was selected and used as the ‘critical layer’ in each case history. To accurately represent the ground motion felt by each critical layer, a site response model was used to calculate average shear stress, which was used to calculate Cyclic Stress Ratio. The site response model was built using DEEPSOIL V6.1 with measured seismic shear wave velocities. Velocities were measured using passive geophysical methods in conjunction with Spatial Autocorrelation (SPAC) methods to process the data into shear wave velocity profiles. Measured velocities ranged from approximately 117 to 469 meters per second at depths ranging from 0 to 50 meters below the ground and were normally dispersive.
|
9 |
Seismic Microzonation Of Erbaa (tokat-turkey) Loccated Along Eastern Segment Of The North Anatolian Fault Zone (nafz)Akin, Muge 01 December 2009 (has links) (PDF)
Turkey is one of the most earthquake prone countries in the world. The study area, Erbaa, is located in a seismically active fault zone known as North Anatolian Fault Zone (NAFZ). Erbaa is one of the towns of Tokat located in the Middle Black Sea Region. According to the Earthquake zoning map of Turkey, the study area is in the First Degree Earthquake Zone. The city center of Erbaa (Tokat) was previously settled on the left embankment of Kelkit River. After the disastrous 1942 Niksar-Erbaa earthquake (Mw = 7.2), the settlement was moved southwards. From the period of 1900s, several earthquakes occurred in this region and around Erbaa. The 1942 earthquake is the most destructive earthquake in the center of Erbaa settlement.
In this study, the geological and geotechnical properties of the study area were investigated by detailed site investigations. The Erbaa settlement is located on alluvial and Pliocene deposits. The Pliocene clay, silt, sand, and gravel layers exist in the southern part of Erbaa. Alluvium in Erbaa region consists of gravelly, sandy, silty, and clayey layers. The alluvial deposits are composed of stratified materials of heterogeneous grain sizes, derived from various geological units in the vicinity.
The main objective of this study is to prepare a seismic microzonation map of the study area for urban planning purposes since it is getting more essential to plan new settlements considering safe development strategies after the disastrous earthquakes. In this respect, seismic hazard analyses were performed to deterministically assess the seismic hazard of the study area. Afterwards, the essential ground motions were predicted regarding near fault effects as the study area is settled on an active fault zone. 1-D equivalent linear site response analyses were carried out to evaluate the site effects in the study area. Amplification values obtained from site response analyses reveal that the soil layers in the study area is quite rigid. Furthermore, liquefaction potential and post liquefaction effects including lateral spreading and vertical settlement were also delineated for the study area. The above-mentioned parameters were taken into account in order to prepare a final seismic microzonation map of the study area. The layers were evaluated on the basis of overlay methodologies including Multi-Criteria Decision Analysis (MCDA). Two different MCDA techniques, Simple Additive Weighting (SAW) and Analytical Hierarchical Process (AHP), were carried out in GIS environment. The seismic microzonation maps prepared by SAW and AHP methods are compared to obtain a final seismic microzonation map. Finally, the map derived from the AHP method is proposed to be the final seismic microzonation map of Erbaa.
As an overall conclusion, the northwestern part of the study area where the loose alluvial units exist is found to be vulnerable to earthquake-induced deformations. On the other hand, the Pliocene units in the southern and alluvial units in the northeastern part are quite resistant to earthquake effects. In addition, the proposed final seismic microzonation map should be considered by urban planners and policy makers during urban planning projects in Erbaa.
|
10 |
Quantification of the Effects of Soil Uncertainties on Nonlinear Site Response Analysis: Brute Force Monte Carlo ApproachEshun, Kow Okyere 28 May 2013 (has links)
No description available.
|
Page generated in 0.0593 seconds