• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 301
  • 301
  • 61
  • 57
  • 54
  • 41
  • 40
  • 31
  • 30
  • 28
  • 27
  • 26
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Acoustic Tonal and Vector Properties of Red Hind Grouper Vocalizationd

Unknown Date (has links)
Vertebrates are the most prodigious vocalizing animals in existence, and the most diverse methods of acoustic communication among vertebrates can be found in the ocean. Relatively many teleost fish are gifted with the ability to communicate acoustically, and the family of serranidae often performs this as a function of the swim bladder. Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped with a drum shaped swim bladder acting as a monopole under typical ocean conditions. This configuration allows for what is understood to be omnidirectional projection of tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to 200 Hz of bandwidth and modulation effects based on observed data provided by researchers. Prior studies on many other fish show correlation in acoustic communication profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to an inherent female identity in all juvenile fish which converts to male according to environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization in terms of spectral content. Communication in fish is a complex multi-modal process, with acoustic communication being important for many of the species, particularly those in the littoral regions of the worlds’ oceans. If identifying characteristics of the red hind vocalization can be isolated based on detection, classification, tracking and localizing methodologies, then these identifying characteristics may indeed lead to passive feature identification that allows for estimation of individual fish mass. Hypotheses based on vector, cyclostationary and classical tonal mechanics are presented for consideration. A battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated undersea sound source were conducted. The results are supplied with the intent of validating hypothesis in a non-expert system manner that shows how a series of biological metrics may be assessed for detection, classification, localization and mass estimation for an individual vocalizing red hind grouper / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
242

Modeling the performance of a laser for tracking an underwater dynamic target

Unknown Date (has links)
Options for tracking dynamic underwater targets using optical methods is currently limited. This thesis examines optical reflectance intensities utilizing Lambert’s Reflection Model and based on a proposed underwater laser tracking system. Numerical analysis is performed through simulation to determine the detectable light intensities based on relationships between varying inputs such as angle of illumination and target position. Attenuation, noise, and laser beam spreading are included in the analysis. Simulation results suggest optical tracking exhibits complex relationships based on target location and illumination angle. Signal to Noise Ratios are a better indicator of system capabilities than received intensities. Signal reception does not necessarily confirm target capture in a multi-sensor network. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
243

Detection and classification of marine mammal sounds

Unknown Date (has links)
Ocean is home to a large population of marine mammals such as dolphins and whales and concerns over anthropogenic activities in the regions close to their habitants have been increased. Therefore the ability to detect the presence of these species in the field, to analyze and classify their vocalization patterns for signs of distress and distortion of their communication calls will prove to be invaluable in protecting these species. The objective of this research is to investigate methods that automatically detect and classify vocalization patterns of marine mammals. The first work performed is the classification of bottlenose dolphin calls by type. The extraction of salient and distinguishing features from recordings is a major part of this endeavor. To this end, two strategies are evaluated with real datasets provided by Woods Hole Oceanographic Institution: The first strategy is to use contour-based features such as Time-Frequency Parameters and Fourier Descriptors and the second is to employ texture-based features such as Local Binary Patterns (LBP) and Gabor Wavelets. Once dolphin whistle features are extracted for spectrograms, selection of classification procedures is crucial to the success of the process. For this purpose, the performances of classifiers such as K-Nearest Neighbor, Support Vector Machine, and Sparse Representation Classifier (SRC) are assessed thoroughly, together with those of the underlined feature extractors. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
244

Underwater acoustic channel estimation using multiple sources and receivers in shallow waters at very-high frequencies

Unknown Date (has links)
The underwater channel poses numerous challenges for acoustic communication. Acoustic waves suffer long propagation delay, multipath, fading, and potentially high spatial and temporal variability. In addition, there is no typical underwater acoustic channel; every body of water exhibits quantifiably different properties. Underwater acoustic modems are traditionally operated at low frequencies. However, the use of broadband, high frequency communication is a good alternative because of the lower background noise compared to low-frequencies, considerably larger bandwidth and better source transducer efficiency. One of the biggest problems in the underwater acoustic communications at high frequencies is time-selective fading, resulting in the Doppler spread. While many Doppler detection, estimation and compensation techniques can be found in literature, the applications are limited to systems operating at low frequencies contained within frequencies ranging from a few hundred Hertz to around 30 kHz. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
245

Echolocation-based foraging by harbor porpoises and sperm whales, including effects of noise and acoustic propagation

DeRuiter, Stacy L January 2008 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references. / In this thesis, I provide quantitative descriptions of toothed whale echolocation and foraging behavior, including assessment of the effects of noise on foraging behavior and the potential influence of ocean acoustic propagation conditions on biosonar detection ranges and whale noise exposure. In addition to presenting some novel basic science findings, the case studies presented in this thesis have implications for future work and for management. In Chapter 2, I describe the application of a modified version of the Dtag to studies of harbor porpoise echolocation behavior. The study results indicate how porpoises vary the rate and level of their echolocation clicks during prey capture events; detail the differences in echolocation behavior between different animals and in response to differences in prey fish; and show that, unlike bats, porpoises continue their echolocation buzz after the moment of prey capture. Chapters 3-4 provide case studies that emphasize the importance of applying realistic models of ocean acoustic propagation in marine mammal studies. These chapters illustrate that, although using geometric spreading approximations to predict communication/target detection ranges or noise exposure levels is appropriate in some cases, it can result in large errors in other cases, particularly in situations where refraction in the water column or multi-path acoustic propagation are significant. Finally, in Chapter 5, I describe two methods for statistical analysis of whale behavior data, the rotation test and a semi-Markov chain model. I apply those methods to test for changes in sperm whale foraging behavior in response to airgun noise exposure. Test results indicate that, despite the low-level exposures experienced by the whales in the study, some (but not all) of them reduced their buzz production rates and altered other foraging behavior parameters in response to the airgun exposure. / by Stacy Lynn DeRuiter. / Ph.D.
246

Quantification of the spatial and temporal evolution of stratified shear instabilities at high Reynolds number using quantitative acoustic scattering techniques

Fincke, Jonathan Randall January 2015 (has links)
Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2015. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 54-56). / The spatial and temporal evolution of stratified shear instabilities is quantified in a highly stratified and energetic estuary. The measurements are made using high-resolution acoustic backscatter from an array composed of six calibrated broadband transducers connected to a six-channel high-frequency (120-600 kHz) broadband acoustic backscatter system. The array was mounted on the bottom of the estuary and looking upward. The spatial and temporal evolution of the waves is described in terms of their wavelength, amplitude and turbulent dissipation as a function of space and time. The observed waves reach an arrested growth stage nearly 10 times faster than laboratory and numerical experiments performed at much lower Reynolds number. High turbulent dissipation rates are observed within the braid regions of the waves, consistent with the rapid transition to arrested growth. Further, it appears that the waves do not undergo periodic doubling and do not collapse once their maximum amplitude is reached. Under some conditions long internal waves may provide the perturbation that decreases the gradient Richardson number so as to initiate shear instability. The initial Richardson number for the observed instabilities is likely between 0.1 and 0.2 based on the slope and growth rate of the shear instabilities. / by Jonathan Randall Fincke. / S.M.
247

A channel subspace post-filtering approach to adaptive equalization

Nadakuditi, Rajesh Rao January 2002 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2002. / Includes bibliographical references (p. 151-154). / by Rajesh Rao Naduditi. / S.M.
248

Spatial Coherence in a Shallow Water Waveguide

Yang, Jie 21 February 2007 (has links)
In shallow water environments, sound propagation experiences multiple interactions with the surface/bottom interfaces, with hydrodynamic disturbances such as internal waves, and with tides and fronts. It is thus very difficult to make satisfactory predictions of sound propagation in shallow water. Given that many of the ocean characteristics can be modeled as stochastic processes, the statistical measure, spatial coherence, is consequently an important quantity. Spatial coherence provides valuable information for array performance predictions. However, for the case of long-range, low frequency propagation, studies of spatial coherence influenced by various environmental parameters are limited insofar as having the appropriate environmental data with which to model and interpret the results. The comprehensive Asian Seas International Experiment 2001 (ASIAEX01) examined acoustic propagation and scattering in shallow water. Environmental oceanographic data were taken simultaneously with the acoustic data. ASIAEX01 provided a unique data set which enabled separate study of the characteristics of the oceanographic features and their influence on long range sound propagation. In this thesis, the environmental descriptors considered include sediment sound speed and attenuation, background internal waves, episodic non-linear internal waves, and air-sea interface conditions. Using this environmental data, the acoustic data are analyzed to show the characteristics of spatial coherence in a shallow water waveguide. It is shown that spatial coherence can be used as an inversion parameter to extract geoacoustic information for the seabed. Environmental phenomena including internal waves and wind-generated surface waves are also studied. The spatial and temporal variations in the sound field induced by them are presented. In addition, a tank experiment is presented which simulates propagation in a shallow water waveguide over a short range. Based on the data model comparison results, the model proposed here is effective in addressing the major environmental effects on sound propagation in shallow water.
249

Design Of A Multi-frequency Underwater Transducer Using Cylindrical Piezoelectric Elements

Yavuz, Siar Deniz 01 July 2011 (has links) (PDF)
In this thesis, numerical and experimental design of a multi-frequency underwater acoustic transducer with cylindrical piezoelectric ceramic tubes is studied. In the numerical design, the acoustic, mechanical and thermal performances of the transducer are investigated by means of finite element method (FEM) in ANSYS. The design of the transducer that meets the acoustic requirements is checked in terms of the mechanical and thermal performances. After the completion of the numerical design, the transducer is manufactured and some performance tests such as impedance test, hydrostatic pressure test and full-power operation test are applied to it. Finally, the results of the numerical and experimental design are compared. As a result, the design of an underwater acoustic transducer that operates at two frequency bands centered at about 30 and 60 kHz under a hydrostatic pressure of 30 bars is accomplished. This transducer also resist to a shock loading of 500g for 1 millisecond.
250

An ultrasonic testbench for reproducing the degradation of sonar performance in fluctuating ocean / Un banc d'essais ultrasonore pour reproduire les dégradations de performances sonar en milieu marin fluctuant

Real, Gaultier 12 November 2015 (has links)
Le milieu océanique est sujet à de nombreuses sources de fluctuations. Les plus importantes sont les ondes internes, très fréquentes et entrainant des fluctuations de la distribution spatiale du champ de célérité du son. En raison de la longue période de ces phénomènes comparée au temps de propagation des ondes acoustiques pour des applications sonar, le processus peut être considéré figé dans le temps pour chaque réalisation stochastique du milieu. Le développement de bancs d’essais permettant de reproduire les effets de la turbulence atmosphérique a permis des avancées considérables dans le domaine de l’optique adaptative. Nous voyons donc un fort intérêt dans la possibilité de reproduire les effets des ondes internes sur la propagation du son en environnement contrôlé. Un protocole expérimental dans une cuve d’eau est proposé: une onde ultrasonore est transmise à travers une lentille acoustique aléatoirement rugueuse, ce qui produit des distorsions du front d’onde reçu. Les fluctuations des signaux reçus sont contrôlées en modifiant les paramètres statistiques de rugosité de la lentille. Ces paramètres sont reliés à l’analyse dimensionnelle permettant de classifier les configurations étudiées selon des régimes de fluctuations et de prédire les moments statistiques du champ acoustique jusqu’à l’ordre quatre. Une excellente correspondance est observée entre notre protocole expérimental et des résultats théoriques et numériques.La dégradation des performances des techniques de détection classiques appliquées à nos données expérimentales souligne le besoin de techniques correctives. Un état de l’art des techniques existantes dans divers domaines est proposé. / The ocean medium is subject to many sources of fluctuations. The most critical ones were found to be internal waves, occurring frequently and inducing fluctuations of the spatial distribution of the sound speed field. Because of the fairly long period of this phenomenon as compared to the propagation time of acoustic waves for sonar applications, the process can be considered frozen in time for each stochastic realization of the medium. The development of testbenches allowing to reproduce the effect of atmospheric turbulence on optic waves propagation under laboratory conditions lead to considerable advancements in the field of adaptive optics. We therefore see a vivid interest in being able to reproduce the effects of internal waves on sound propagation in controlled environments. An experimental protocol in a water tank is proposed: an ultrasonic wave is transmitted through a randomly rough acoustic lens, producing distortions of the received wavefront. The induced signal fluctuations are controlled by tuning the statistical parameters of the roughness of the lens. Especially, they are linked to dimensional parameters allowing to classify the configurations into regimes of fluctuations and to predict the statistical moment of the acoustic pressure up to the fourth order. A remarkable relevance of our experimental scheme is found when compared to theoretical and simulation results. The degradation of classical signal processing techniques when applied to our acquired data highlights the need for corrective detection techniques. A review of the existing techniques in other domains is proposed.

Page generated in 0.0917 seconds