Spelling suggestions: "subject:"iniform convergence"" "subject:"niform convergence""
1 |
On Uniform ConvergenceDrew, Dan Dale 02 1900 (has links)
In this paper, we will be concerned primarily with series of functions and a particular type of convergence which will be described. The purpose of this paper is to familiarize the reader with the concept of uniform convergence. In the main it is a compilation of material found in various references and revised to conform to standard notation.
|
2 |
Limits of Schema MappingsKolaitis, Phokion, Pichler, Reinhard, Sallinger, Emanuel, Savenkov, Vadim 02 October 2018 (has links) (PDF)
Schema mappings have been extensively studied in the context of data exchange and data integration, where they have turned out to be the right level of abstraction for formalizing data interoperability tasks. Up to now and for the most part, schema mappings have been studied as static objects, in the sense that each time the focus has been on a single schema mapping of interest or, in the case of composition, on a pair of schema mappings of interest. In this paper, we adopt a dynamic viewpoint and embark on a study of sequences of schema mappings and of the limiting behavior of such sequences. To this effect, we first introduce a natural notion of distance on sets of finite target instances that expresses how "Close" two sets of target instances are as regards the certain answers of conjunctive queries on these sets. Using this notion of distance, we investigate pointwise limits and uniform limits of sequences of schema mappings, as well as the companion notions of pointwise Cauchy and uniformly Cauchy sequences of schema mappings. We obtain a number of results about the limits of sequences of GAV schema mappings and the limits of sequences of LAV schema mappings that reveal striking differences between these two classes of schema mappings. We also consider the completion of the metric space of sets of target instances and obtain concrete representations of limits of sequences of schema mappings in terms of generalized schema mappings, that is, schema mappings with infinite target instances as solutions to (finite) source instances.
|
3 |
HILBERT SPACES AND FOURIER SERIESHarris, Terri Joan, Mrs. 01 September 2015 (has links)
I give an overview of the basic theory of Hilbert spaces necessary to understand the convergence of the Fourier series for square integrable functions. I state the necessary theorems and definitions to understand the formulations of the problem in a Hilbert space framework, and then I give some applications of the theory along the way.
|
4 |
Σχεδιασμός, κατασκευή του λογισμικού UNICORN και η αξιοποίηση του στην διδασκαλία προχωρημένων μαθηματικών εννοιώνΤσουμάνη, Γαλάτεια-Ελεάννα 20 February 2008 (has links)
Η παρούσα εργασία πραγματεύεται το σχεδιασμό και τη δημιουργία εκπαιδευτικού λογισμικού για τη διδασκαλία της ομοιόμορφης σύγκλισης ακολουθιών πραγματικών συναρτήσεων. Η ομοιόμορφη σύγκλιση ακολουθιών πραγματικών συναρτήσεων είναι ένα μαθηματικό ζήτημα που αντιμετωπίζουν οι δευτεροετείς φοιτητές των Μαθηματικών Τμημάτων. Η εμπειρία τόσο των φοιτητών όσο και των εκπαιδευτικών έχει δείξει ότι η μάθηση αυτού του αντικειμένου με παραδοσιακές μεθόδους διδασκαλίας (π.χ., από έδρας διδασκαλία, ή εγχειρίδιο) παρουσιάζει δυσκολία στην κατασκευή των γραφικών παραστάσεων ακολουθιών πραγματικών συναρτήσεων. Στόχος του λoγισμικού UNICORN (UNIform COnvergence Resource Navigator) είναι να καλύψει αυτό το εκπαιδευτικό κενό διδάσκοντας την έννοια της ομοιόμορφης σύγκλισης μέσα από την κατασκευή και ανάλυση των γραφικών παραστάσεων. Ο σχεδιασμός του λογισμικού βασίστηκε κυρίως στην κονστρουκτιβιστική θεωρία μάθησης (constructivism). Το UNICORN είναι ένα ανοιχτό περιβάλλον που επιδιώκει να εμπλέξει ενεργά το φοιτητή στη μαθησιακή διεργασία και να ενεργοποιήσει τη δημιουργικότητά του. Η πλοήγηση του φοιτητή μέσα στο λογισμικό υποβοηθείται εν μέρει από κατευθυντήριες ερωτήσεις και διορθωτικό σχολιασμό (feedback), που βασίζονται στη θεωρία μάθησης του ινστραξιονισμού (instructionism). Το UNICORN κατασκευάστηκε με τη χρήση των προγραμμάτων Mathematica 4.0 (γραφικές παραστάσεις) και Macromedia Director 8.5 (κοινή επιφάνεια – interface), το υποπρόγραμμα BuddyApi (επικοινωνία UNICORN-Mathematica), και τη γλώσσα προγραμματισμού Lingo (λειτουργίες interface). Το λογισμικό είναι έτοιμο για πιλοτική χρήση και αξιολόγηση ως συμπληρωματικό εκπαιδευτικό υλικό και/ή ως εργαλείο μάθησης από απόσταση. / The present work discusses the design and development of educational software for teaching the uniform convergence of sequences of real functions. This advanced mathematical topic is taught during the second year of undergraduate studies in Mathematics Departments of Greek academic institutions. The experiences of both students and instructors agree that this topic is difficult to understand by using only traditional teaching methods (such as a lecture and the use of the blackboard). The reason is that it is difficult to draw manually graphical representations of the sequences of real functions. The educational software described here (named UNIform COnvergence Resource Navigator, or UNICORN) aims to cover this educational gap by teaching the concept of the uniform convergence of sequences of real functions through the construction and analysis of the respective graphical representations. The design of the educational software was mainly based on the teaching theory of constructivism. UNICORN is an open environment that aims to actively involve the user/learner in the learning process and to activate her creativity. The student’s navigation through the software is assisted by instructional questions and feedback, both of which are based on the learning theory of instructionism. UNICORN was developed with the help of Mathematica 4.0 (graphical representations), Director 8.5 (interface), and BuddiApi (communication between UNICORN and Mathematica). The software is ready for pilot testing and evaluation as supplementary teaching material and/or as a tool for long distance learning.
|
5 |
Sequences of Functions : Different Notions of Convergence and How They Are RelatedSätterqvist, Erik January 2018 (has links)
In this thesis we examine different types of convergence for sequences of functions and how these are related. The functions considered are real valued Lebesgue measurablefunctions defined on a subset of R. We also devote a chapter to explore when continuity of a sequence of functions is preserved under pointwise convergence, and see that this happens precisely when the convergence is quasi uniform. / I denna uppsats utforskar vi olika typer av konvergens för funktionsföljder för att se hur de är besläktade. Funktionerna i fråga är reellvärda Lebesguemätbara funktioner definierade på delmängder av R. Vi ägnar också ett kapitel åt att undersöka när kontinuitet hos en följd av funktioner bevaras under punktvis konvergens och ser att detta händer precis då konvergensen är kvasilikformig.
|
6 |
On the numerical integration of singularly perturbed Volterra integro-differential equationsIragi, Bakulikira January 2017 (has links)
Magister Scientiae - MSc / Efficient numerical approaches for parameter dependent problems have been an inter-
esting subject to numerical analysts and engineers over the past decades. This is due
to the prominent role that these problems play in modeling many real life situations
in applied sciences. Often, the choice and the e ciency of the approaches depend on
the nature of the problem to solve. In this work, we consider the general linear first-order singularly perturbed Volterra integro-differential equations (SPVIDEs). These
singularly perturbed problems (SPPs) are governed by integro-differential equations
in which the derivative term is multiplied by a small parameter, known as "perturbation parameter". It is known that when this perturbation parameter approaches
zero, the solution undergoes fast transitions across narrow regions of the domain
(termed boundary or interior layer) thus affecting the convergence of the standard
numerical methods. Therefore one often seeks for numerical approaches which preserve stability for all the values of the perturbation parameter, that is "numerical
methods. This work seeks to investigate some "numerical methods that have been
used to solve SPVIDEs. It also proposes alternative ones. The various numerical
methods are composed of a fitted finite difference scheme used along with suitably
chosen interpolating quadrature rules. For each method investigated or designed, we
analyse its stability and convergence. Finally, numerical computations are carried
out on some test examples to con rm the robustness and competitiveness of the
proposed methods.
|
7 |
Исследование поведения тригонометрических рядов Фурье функций с ограничением на фрактальность их графиков : магистерская диссертация / A study of the behavior of trigonometric Fourier series of functions with a restriction on the fractality of their graphsГриднев, М. Л., Gridnev, M. L. January 2019 (has links)
We introduce the notion of the modulus of fractality and consider the problem of approximation of functions with a restriction on the modulus of fractality by partial sums of trigonometric Fourier series (Fourier sums). The upper estimate of the difference between the function and the corresponding Fourier sum in terms of the modulus of continuity and the modulus of fractality is given. Examples of functions from the considered classes with trigonometric Fourier series diverging at some point are constructed. / Вводится понятие модуля фрактальности и рассматривается задача приближения функций с ограничением на модуль фрактальности частичными суммами тригонометрических рядов Фурье (суммами Фурье). Приведена оценка сверху модуля разности функции и соответствующей суммы Фурье, выраженная в терминах модуля непрерывности и модуля фрактальности. Построены примеры функций из рассматриваемых классов с расходящимся в некоторой точке тригонометрическим рядом Фурье.
|
8 |
Séries de Fourier e o Teorema de Equidistribuição de WeylPassos, Rokenedy Lima 18 May 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is treated in two parts. The first is to find sufficient conditions
for a function so that its Fourier series distributions become common and uniform,
as well as an approach to Fejér’s Theorem, an interesting and useful result of no
Fourier Series study. A second part of the application of the Fourier Series, Weyl
equidistribution theorem. A problem that lies at the frontier of Dynamic Systems
with a Theory of Numbers. The same refers to the distribution of irrational numbers
in the range [0, 1). / Este trabalho é tratado em duas partes. A primeira consiste em encontrar
condições suficientes sobre uma dada função para que sua expansão em Série de
Fourier convirja pontualmente e uniformemente, como também uma abordagem
ao Teorema de Fejér, resultado interessante e útil no estudo de Séries de Fourier.
A segunda parte uma aplicação provenientes das Séries de Fourier, o Teorema de
equidistribuição de Weyl. Um problema que se encontra na fronteira dos Sistemas
Dinâmicos com a Teoria dos Números. O mesmo refere-se à distribuição de números
irracionais no intervalo [0, 1).
|
9 |
Introduction to some modes of convergence : Theory and applicationsBolibrzuch, Milosz January 2017 (has links)
This thesis aims to provide a brief exposition of some chosen modes of convergence; namely uniform convergence, pointwise convergence and L1 convergence. Theoretical discussion is complemented by simple applications to scientific computing. The latter include solving differential equations with various methods and estimating the convergence, as well as modelling problematic situations to investigate odd behaviors of usually convergent methods.
|
10 |
Dvoparametarski singularno perturbovani konturni problemi na mrežama različitog tipa / Singularly perturbed boundary value problems with two parameters on various meshesBrdar Mirjana 27 May 2016 (has links)
<p>U tezi se istražuje uniformna konvergencija Galerkinovog postupka konačnih elemenata na mrežama različitog tipa za dvoparametarske singularno perturbovane probleme.</p><p>Uvedene su slojno-adaptivne mreže za probleme konvekcije-reakcije-difuzije: Bahvalovljeva, Duran-Šiškinova i Duranova za jednodimenzionalni i Duran-Šiškinova i Duranova mreža za dvodimenzionalni problem. Za pomenute probleme na svim ovim mrežama analizirane su greške interpolacije, diskretizacije i greška u energetskoj normi i dokazana je uniformna konvergencija Galerkinovog postupka konačnih elemenata. Sva teorijska tvrđenja su potvrđena numeričkim eksperimentima.<br /> </p> / <p>The thesis explores the uniform convergence for Galerkin nite element<br />method on various meshes for two parameter singularly perturbed problems.<br />Layer-adapted meshes are introduced for convection-reaction-diusion<br />problems: Bakhvalov, Duran-Shishkin and Duran meshes for a one dimensional<br />and Duran-Shishkin and Duran meshes for a two dimensional problem.<br />We analyze the errors of interpolation, discretization and error in the energy<br />norm and prove the parameter uniform convergence for Galerkin nite element<br />method on mentioned meshes. Numerical experiments support theoretical<br />ndings.<br /> </p>
|
Page generated in 0.0841 seconds