Spelling suggestions: "subject:"anitary group"" "subject:"nitary group""
1 |
A Differential Polarization-time Coding Scheme for Polarization-division-multiplexed Fiber-optic Communication SystemsPan, Chunpo 13 January 2011 (has links)
Polarization division multiplexing (PolDM) is a promising way to improve the spectral efficiency of fiber-optic communication systems. However, PolDM systems suffer greatly from polarization mode dispersion (PMD), especially in long-haul systems. PMD is time-varying and is intrinsically hard to compensate. Current PMD compensators are complicated and expensive to build, adding to the cost and complexity of practical PolDM systems. We propose a new differential polarization time coding scheme combined with controlled polarization rotation to increase the system tolerance to PMD. An encoding algorithm, a differential receiver design, and a decoding algorithm are described in detail. Controlled polarization rotation is achievable using conventional Mach-Zehnder interferometers that are used to modulate the signal. Simulation results show that significant improvement in PMD tolerance can be achieved with little added complexity. Given a certain transmission distance, our proposed system can also increase the achievable data rate compared to a PolDM differential quadrature phase shift keying system.
|
2 |
A Differential Polarization-time Coding Scheme for Polarization-division-multiplexed Fiber-optic Communication SystemsPan, Chunpo 13 January 2011 (has links)
Polarization division multiplexing (PolDM) is a promising way to improve the spectral efficiency of fiber-optic communication systems. However, PolDM systems suffer greatly from polarization mode dispersion (PMD), especially in long-haul systems. PMD is time-varying and is intrinsically hard to compensate. Current PMD compensators are complicated and expensive to build, adding to the cost and complexity of practical PolDM systems. We propose a new differential polarization time coding scheme combined with controlled polarization rotation to increase the system tolerance to PMD. An encoding algorithm, a differential receiver design, and a decoding algorithm are described in detail. Controlled polarization rotation is achievable using conventional Mach-Zehnder interferometers that are used to modulate the signal. Simulation results show that significant improvement in PMD tolerance can be achieved with little added complexity. Given a certain transmission distance, our proposed system can also increase the achievable data rate compared to a PolDM differential quadrature phase shift keying system.
|
3 |
Représentations unitaires de U(5) p-adique / Unitary representations of p-adic U(5)Schoemann, Claudia 13 October 2014 (has links)
Nous étudions les représentations complexes, induites par l'induction parabolique, du groupe U(5), défini sur un corps local non-archimedean de caractéristique 0. C'est Qp ou une extension finie de Qp .On parle des 'corps p-adiques'. Soit F un corps p-adique. Soit E : F une extension de corps de degré 2. Soit Gal(E : F ) = {id, σ}le groupe de Galois. On écrit σ(x) = overline{x} forall x ∈ E. Soit | |p la norme p-adique de E. Soient E* = E {0} et E 1 = {x ∈ E | xoverline{x}= 1} .U (5) a trois sous-groupes paraboliques propres. Soit P0 le sous-groupe parabolique minimal et soientP1 et P2 les deux sous-groupes paraboliques maximaux. Soient M0 , M1 et M2 les sous-groupes de Levi standards et soient N0 , N1 et N2 des sous-groupes unipotents de U (5). On a la décomposition de Levi Pi = Mi Ni , i ∈{0, 1, 2} .M0 = E* × E* × E 1 est le sous-groupe de Levi minimal, M1 = GL(2, E) × E 1 et M2 = E* × U(3) sont les sous-groupes de Levi maximaux.On considère les représentations des sous-groupes de Levi, et on les étend trivialement au sous-groupes unipotents pour obtenir des représentations des sous-groupes paraboliques. On exécute une procédure appelée 'l'induction parabolique' pour obtenir les représentations de U (5). Nous considérons les représentations de M0 , puis les représentations non-cuspidales, induites à partir de M1 et M2 . Cela veut dire que la représentation du facteur GL(2, E) de M1 est un sous-quotient propre d'une représentation induite de E* × E* à GL(2, E). La représentation du facteur U (3) de M2 est un sous-quotient propre d'une représentation induite de E* × E 1 à U(3). Un exemple pour M1 est | det |α χ(det) StGL2 * λ' , où α ∈ R, χ est un caractère unitaire de E* , StGL2 est la représentation Steinberg de GL(2, E) et λ' est un caractère de E 1 . Un exemple pour M2 est| |α χ λ (det) StU (3) , où α ∈ R, χ est un caractère unitaire de E* , λ' est un caractère unitaire de E 1et StU (3) est la représentation Steinberg de U(3). On remarque que λ' est unitaire.Ensuite on considère les représentations cuspidales de M1 .On détermine les droites et les points de réductibilité des représentations de U(5) et on détermine les sous-quotients irréductibles. Ensuite, sauf quelque cas particuliers, on détermine le dual unitaire de U(5)par rapport au quotients de Langlands. Les représentations complexes, paraboliquement induites, de U(3) sur un corps p-adique sont classifiées par Charles David Keys dans [Key84], les représentations complexes, paraboliquement induites, de U(4)sur un corps p-adique sont classifiées par Kazuko Konno dans [Kon01]. / We study the parabolically induced complex representations of the unitary group in 5 variables - U(5)- defined over a non-archimedean local field of characteristic 0. This is Qp or a finite extension of Qp ,where p is a prime number. We speak of a 'p-adic field'.Let F be a p-adic field. Let E : F be a field extension of degree two. Let Gal(E : F ) = {id, σ}. We write σ(x) = overline{x} forall x ∈ E. Let | |p denote the p-adic norm on E. Let E* := E {0} and let E 1 := {x ∈ E | x overline{x} = 1} .U(5) has three proper parabolic subgroups. Let P0 denote the minimal parabolic subgroup and P1 andP2 the two maximal parabolic subgroups. Let M0 , M1 and M2 denote the standard Levi subgroups and let N0 , N1and N2 denote unipotent subgroups of U(5). One has the Levi decomposition Pi = Mi Ni , i ∈ {0, 1, 2} .M0 = E* × E* × E 1 is the minimal Levi subgroup, M1 = GL(2, E) × E 1 and M2 = E* × U (3) are the two maximal parabolic subgroups.We consider representations of the Levi subgroups and extend them trivially to the unipotent subgroups toobtain representations of the parabolic groups. One now performs a procedure called 'parabolic induction'to obtain representations of U (5).We consider representations of M0 , further we consider non-cuspidal, not fully-induced representationsof M1 and M2 . For M1 this means that the representation of the GL(2, E)− part is a proper subquotientof a representation induced from E* × E* to GL(2, E). For M2 this means that the representation of theU (3)− part of M2 is a proper subquotient of a representation induced from E* × E 1 to U (3).As an example for M1 , take | det |α χ(det) StGL2 * λ' , where α ∈ R, χ is a unitary character of E* , StGL2 is the Steinberg representation of GL(2, E) and λ' is a character of E 1 . As an example forM2 , take | |α χ λ' (det) StU (3) , where α ∈ R, χ is a unitary character of E* , λ' is a character of E 1 andStU (3) is the Steinberg representation of U (3). Note that λ' is unitary.Further we consider the cuspidal representations of M1 .We determine the points and lines of reducibility of the representations of U(5), and we determinethe irreducible subquotients. Further, except several particular cases, we determine the unitary dual ofU(5) in terms of Langlands-quotients.The parabolically induced complex representations of U(3) over a p-adic field have been classied byCharles David Keys in [Key84], the parabolically induced complex representations of U(4) over a p-adicfield have been classied by Kazuko Konno in [Kon01].An aim of further study is the classication of the induced complex representations of unitary groupsof higher rank, like U (6) or U (7). The structure of the Levi subgroups of U (6) resembles the structureof the Levi subgroups of U (4), the structure of the Levi groups of U (7) resembles those of U (3) and ofU (5).Another aim is the classication of the parabolically induced complex representatioins of U (n) over ap-adic field for arbitrary n. Especially one would like to determine the irreducible unitary representations.
|
4 |
FORMAL DEGREES AND LOCAL THETA CORRESPONDENCE: QUATERNIONIC CASE / 形式次数と局所テータ対応: 四元数ユニタリ群の場合Kakuhama, Hirotaka 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22968号 / 理博第4645号 / 新制||理||1668(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 市野 篤史, 教授 池田 保, 教授 加藤 周 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
5 |
Topics Related to Tensorially Absorbing Inclusions and Algebraic K-Theory of C*-AlgebrasSarkowicz, Pawel 25 September 2023 (has links)
This thesis is split up into two parts: the first concerns certain applications of the de la Harpe-Skandalis determinant to K-theory of appropriately regular C*-algebras. The second is concerned with (unital) inclusions of C*-algebras which satisfy a strong tensorial absorption condition. The first chapter following the preliminary section is joint work with Aaron Tikuisis [ST23], while the following chapters are independent. The penultimate chapter is [Sar23b] and the last chapter is essentially [Sar23a].
In the first chapter following the preliminaries, we examine the interplay between the algebraic K₁-group and the unitary algebraic K₁-group of a unital C*-algebra. We prove that for an abundance of unital C*-algebras, the algebraic K₁-group splits naturally as a direct sum of the unitary algebraic K₁-group and the space of continuous real-valued affine functions on the trace simplex. We further prove that if one considers Hausdorffized variants, then for any unital C*-algebra, there is a natural splitting of the Hausdorffized algebraic K₁-group in terms of the Hausdorffized unitary algebraic K₁-group and the space of continuous real-valued affine functions on the trace simplex. Moreover, this a splitting of topological groups.
The following chapter studies how certain group homomorphisms between unitary groups of C*-algebras induce maps on the trace simplex. In particular, we show that a contractive group homomorphism between unital C*-algebras which sends the circle to the circle, induces a map between their trace simplices. Under mild regularity conditions these further induce maps between Elliott invariants. As a consequence we show that certain inclusions of C*-algebras are in a correspondence with certain inclusions of unitary groups.
Finally we investigate what we call "D-stable inclusions" of C*-algebras, where D is strongly self-absorbing. We give a systematic study and prove that such inclusions between unital, separable, D-stable C*-algebras exist, are abundant, and are non-trivial.
|
6 |
Aplikace deskriptivní teorie množin v matematické analýze / Applications of descriptive set theory in mathematical analysisDoležal, Martin January 2013 (has links)
We characterize various types of σ-porosity via an infinite game in terms of winning strategies. We use a modification of the game to prove and reprove some new and older in- scribing theorems for σ-ideals of σ-porous type in locally compact metric spaces. We show that there exists a closed set which is σ-(1 − ε)-symmetrically porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous. Next, we prove that the realizable by an action unitary representations of a finite abelian group Γ on an infinite-dimensional complex Hilbert space H form a comeager set in Rep(Γ, H). 1
|
7 |
Processus sur le groupe unitaire et probabilités libres / Processes on the unitary group and free probabilityCébron, Guillaume 13 November 2014 (has links)
Cette thèse est consacrée à l'étude asymptotique d'objets liés au mouvement brownien sur le groupe unitaire en grande dimension, ainsi qu'à l'étude, dans le cadre des probabilités libres, des versions non-commutatives de ces objets. Elle se subdivise essentiellement en trois parties.Dans le chapitre 2, nous résolvons le problème initial de cette thèse, à savoir la convergence de la transformation de Hall sur le groupe unitaire vers la transformation de Hall libre, lorsque la dimension tend vers l'infini. Pour résoudre ce problème, nous établissons des théorèmes d'existence de noyaux de transition pour la convolution libre. Enfin, nous utilisons ces résultats pour prouver que, pareillement au mouvement brownien sur le groupe unitaire, le mouvement brownien sur le groupe linéaire converge en distribution non-commutative vers sa version libre. Nous étudions les fluctuations autour de cette convergence dans le chapitre 3. Le chapitre 4 présente un morphisme entre les mesures infiniment divisibles pour la convolution libre additive d'une part et multiplicative de l'autre. Nous montrons que ce morphisme possède une version matricielle qui s'appuie sur un nouveau modèle de matrices aléatoires pour les processus de Lévy libres multiplicatifs. / This thesis focuses on the asymptotic of objects related to the Brownian motion on the unitary group in large dimension, and on the study, in free probability, of the non-commutative versions of those objects. It subdivides into essentially three parts.In Chapter 2, we solve the original problem of this thesis: the convergence of the Hall transform on the unitary group to the free Hall transform, as the dimension tends to infinity. To solve this problem, we establish theorems of existence of transition kernel for the free convolution. Finally, we use these results to prove that, exactly as the Brownian motion on the unitary group, the Brownian motion on the linear group converges in noncommutative distribution to its free version. Then we study the fluctuations around this convergence in Chapter 3. Chapter 4 presents a homomorphism between infinitely divisible measures for the free convolution, in respectively the additive case and the multiplicative case. We show that this homomorphism has a matricialversion which is based on a new model of random matrices for the free multiplicative Lévy processes.
|
8 |
Construction of Maps by Postnikov TowersKennedy, Chris A. January 2018 (has links)
No description available.
|
9 |
The classification and dynamics of the momentum polytopes of the SU(3) action on points in the complex projective plane with an application to point vorticesShaddad, Amna January 2018 (has links)
We have fully classified the momentum polytopes of the SU(3) action on CP(2)xCP(2) and CP(2)xCP(2) xCP(2), both actions with weighted symplectic forms, and their corresponding transition momentum polytopes. For CP(2)xCP(2) the momentum polytopes are distinct line segments. The action on CP(2)xCP(2) xCP(2), has 9 different momentum polytopes. The vertices of the momentum polytopes of the SU(3) action on CP(2)xCP(2) xCP(2), fall into two categories: definite and indefinite vertices. The reduced space corresponding to momentum map image values at definite vertices is isomorphic to the 2-sphere. We show that these results can be applied to assess the dynamics by introducing and computing the space of allowed velocity vectors for the different configurations of two-vortex systems.
|
10 |
Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica. / Triangular forms for nonlinear systems with two inputs and control of driftless systems on SU(n) with applications in quantum mechanics.Silveira, Hector Bessa 19 February 2010 (has links)
A presente tese aborda dois problemas distintos e independentes: triangularização de sistemas não-lineares com duas entradas e controle de sistemas sem arrasto que evoluem no grupo especial unitário SU(n). Em relação ao primeiro, estabeleceu-se, através da generalização de resultados bem conhecidos, condições geométricas para que um sistema com duas entradas seja descrito por uma forma triangular específica após uma mudança de coordenadas e uma realimentação de estado estática regular. Para o segundo problema, desenvolveu-se uma estratégia de controle que força o estado do sistema a rastrear assintoticamente uma trajetória de referência periódica que passa por um estado objetivo arbitrário. O método de controle proposto utiliza os resultados de convergência de tipo- Lyapunov que foram estabelecidos pela presente pesquisa e que tiveram como inspiração uma versão periódica do princípio da invariância de LaSalle. Apresentou-se, ainda, os resultados de simulação obtidos com a aplicação da técnica de controle desenvolvida a um sistema quântico consistindo de duas partículas de spin-1/2, com o objetivo de gerar a porta lógica quântica C-NOT. / This thesis treats two distinct and independent problems: triangularization of nonlinear systems with two inputs and control of driftless systems which evolve on the special unitary group SU(n). Concerning the first, one has established, by means of the generalization of well-known results, geometric conditions for a system with two inputs to be described by a specific triangular form after a change of coordinates and a regular static state feedback. For the second problem, one has developed a control strategy that forces the state of the system to track in an asymptotic manner a periodic reference trajectory which passes by an arbitrary goal state. The proposed control method uses Lyapunovlike convergence results that were established in this research and which were inspired in a periodic version of LaSalles invariance principle. Furthermore, one has shown the simulation results obtained from the application of the developed control technique to a quantum system consisting of two spin-1/2 particles, with the aim of generating the C-NOT quantum logic gate.
|
Page generated in 0.0505 seconds