Spelling suggestions: "subject:"iniversal taylor series"" "subject:"iniversal baylor series""
1 |
Καθολικές σειρές Taylor σε μη απλά συνεκτικούς τόπουςΠετρούτσος, Δημήτριος 18 February 2008 (has links)
Αποδεικνύουμε την ύπαρξη καθολικών σειρών taylor στην περίπτωση συγκεκριμένου μη απλά συνεκτικού τόπου, καθώς και την ύπαρξη ενός πυκνού διανυσματικού υποχώρου. / We prove the existence of universal taylor series in the case of a specific non simply connected domain. We also prove the existence of a dense vector subspace.
|
2 |
Θεωρία δυναμικού και εφαρμογές σε καθολικές σειρές TaylorΧατζηγιαννακίδου, Νικολίτσα 06 November 2014 (has links)
Η παρούσα διπλωματική εργασία αποτελείται από δύο μέρη. Στο πρώτο μέρος θα μελετήσουμε βασικές έννοιες και θεωρήματα από την θεωρία δυναμικού. Έννοιες όπως το δυναμικό, τα polar σύνολα, η συνάρτηση Green ενός συνόλου και η χωρητικότητα ενός συνόλου είναι αναγκαίες ώστε να οδηγηθούμε στο περίφημο θεώρημα των Bernstein-Walsh, το οποίο δίνει την ταχύτητα της πολυωνυμικής προσέγγισης αναλυτικών συναρτήσεων σε συμπαγή σύνολα με συνεκτικό συμπλήρωμα.
Στο δεύτερο μέρος, μελετάμε ένα αποτέλεσμα των Γ. Κωστάκη και Ν. Τσιρίβα, για μία έννοια σχετική με τις καθολικές σειρές Taylor, τις διπλά καθολικές σειρές Taylor. Συγκεκριμένα, για δοσμένη γνησίως αύξουσα ακολουθία φυσικών αριθμών (λn), μια ολόμορφη συνάρτηση f στον ανοιχτό μοναδιαίο δίσκο λέγεται διπλά καθολική σειρά Taylor, ως προς τις ακολουθίες (n),(λn), αν για κάθε συμπαγές σύνολο Κ, υποσύνολο του μιγαδικού επιπέδου, ξένο με τον δίσκο και με συνεκτικό συμπλήρωμα και για κάθε ζεύγος συναρτήσεων (g1,g2) συνεχών στο Κ, ολόμορφων στο εσωτερικό του Κ, υπάρχει υπακολουθία των φυσικών αριθμών (μn), τέτοια ώστε (S_{μn}(f,0),S_{λ_{μn}}(f,0)) προσεγγίζουν ομοιόμορφα τις (g_{1},g_{2}) (όπου S_{n}(f,0) το n-οστό μερικό άθροισμα του αναπτύγματος Taylor της f με κέντρο το 0). Το κεντρικό λοιπόν αποτέλεσμα είναι ότι για δοσμένη ακολουθία (λn), η οικογένεια των διπλά καθολικών σειρών Taylor, ως προς τις ακολουθίες (n),(λn), είναι Gδ και πυκνή στο σύνολο των ολόμορφων συναρτήσεων στον ανοιχτό μοναδιαίο δίσκο (ειδικότερα είναι μη-κενή) αν και μόνο αν το ανώτερο όριο limsup_{n}(λn/n) είναι άπειρο. Εργαλείο-κλειδί για το παραπάνω αποτέλεσμα είναι το Θεώρημα Bernstein-Walsh. / --
|
3 |
Πρόβλημα και ιδιότητες σε κλάσεις καθολικών συναρτήσεωνΜεγάλου, Φωτεινή Ι. 11 September 2008 (has links)
- / -
|
Page generated in 0.0722 seconds