Spelling suggestions: "subject:"iniversal envelope algebra"" "subject:"iniversal enveloped algebra""
1 |
Family Algebras of Representations with Simple Spectrumrojkovsk@math.upenn.edu 18 June 2001 (has links)
No description available.
|
2 |
Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformésHerlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
|
3 |
Subalgebras de Mishchenko-Fomenko em S(gl_n) e sequências regulares / Mishchenko-Fomenko Subalgebras in S(gl_n) and regular sequencesCantero, Wilson Fernando Mutis 01 April 2016 (has links)
Seja S(gl_n) a álgebra simétrica da álgebra de Lie das matrizes de tamanho nxn sobre o corpo C dos números complexos. Para \\xi em gl_n*=gl_n, seja F_{\\xi}(gl_n) a asubálgebra de Mishchenko-Fomenko de S(gl_n) construída pelo método de deslocamento de argumento associada ao parâmetro \\xi. É conhecido que se \\xi é um elemento semisimples regular ou nilpotente regular então a subálgebra F_{\\xi}(gl_n) é gerada por uma sequência regular em S(gl_n). Nesta tese é provado que em gl_3 o resultado estende para todo \\xi em gl_3, isto é, as subálgebras de Mishchenco-Fomenko F_{\\xi}(gl_3) são geradas por uma sequência regular em S(gl_3), uma consequência deste fato é que os módulo irredutíveis sobre certas subálgebras comutativas da álgebra envolvente universal U(gl_3) podem ser levantados a módulos irredutiveis sobre U(gl_3). Além disso, é provado que em gl_4 esse resultado é válido para todo elemento nilpotente \\xi em gl_4. O caso geral, que é determinar quando as subálgebras de Mishchenko-Fomenko F_{\\xi}(gl_n) , com \\xi em gl_n, são geradas por uma sequência regular em S(gl_n), é ainda um problema aberto. / Let S(gl_n) be the symmetric algebra of the Lie algebra of the matrices of size nxn over the field C of complex numbers. For \\xi in gl_n*=gl_n, let F_{\\xi}(gl_n) be the Mishchenko-Fomenko subalgebra of S(gl_n) constructed by the argument shift method associated with the parameter \\xi. It is known that if \\xi is a semisimple regular element or nilpotent regular element then the subalgebra F_(g_ln) is generated by a regular sequence in S(gl_n). In this thesis we prove that in gl_3 the result is extended to all \\xi in gl_3, this is, the Mishchenco-Fomenko subalgebras F_{\\xi}(gl3) are generated by a regular sequence in S(gl_3), A consequence of this fact is that the irreducible modules over certain commutative subalgebras of the universal enveloping algebra U(gl_3) can it be lifted to irreducible modules over U(gl_3). Furthermore, is proved that this result is true for all elements nilpotente \\xi in gl_4. The general case, which is determined when the Mishchenko-Fomenko subalgebras F_{\\xi}(gl_n), with \\xi in gl_n, are generated by a regular sequence in S(gl_n), it is still an open problem.
|
Page generated in 0.075 seconds