• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformés

Herlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
2

Intégrales Itérées en Physique Combinatoire

Deneufchâtel, Matthieu 27 September 2012 (has links) (PDF)
Nous présentons différents résultats liés par les outils et les structures qu'ils font intervenir (intégrales itérées, produits de mélange). Dans la première partie, nous considérons le calcul de certaines intégrales de type Selberg et leurs limites lorsque le nombre de variables tend vers l'infini. Dans le cas général, on montre que le résultat s'exprime comme un produit dont le nombre de facteurs ne dépend pas du nombre de variables (sous certaines conditions). Si la puissance du déterminant de Vandermonde vaut 2, il est possible de calculer la limite de ces intégrales lorsque le nombre de variables tend vers l'infini à l'aide d'opérateurs liés à l'interpolation de Newton. Dans la seconde partie, nous étudions les propriétés de dépendance linéaire de familles de fonctions obtenues par intégrales itérées et donnons un critère qui permet d'assurer l'indépendance linéaire d'une famille infinie de fonctions à partir de l'étude des relations entre les fonctions obtenues par intégrales simples. Nous montrons comment construire effectivement les corps de germes de fonctions analytiques nécessaires et en donnons quelques exemples qui permettent d'étendre les résultats connus sur les hyperlogarithmes. Ensuite, nous étudions certaines bases de l'algèbre libre dans le but d'appliquer la factorisation de Schützenberger. Nous rappelons quelques résultats classiques, puis nous intéressons à la famille obtenue à partir des mots de Lyndon. Celle-ci ne permet pas d'écrire la factorisation qui nous intéresse mais nous précisons les caractéristiques de sa famille duale. Enfin, nous donnons un critère relatif à deux familles en dualité assurant que l'on peut écrire cette factorisation.
3

Sur l'isomorphisme entre les cohomologies de Hochschild et de Chevalley-Eilenberg.

Riviere, Salim 06 December 2012 (has links) (PDF)
Nous construisons un inverse explicite à l'isomorphisme d'antisymétrisation de Cartan-Eilenberg qui permet d'identifier la cohomologie d'une algèbre de Lie sur un anneau de caractéristique zéro et la cohomologie de Hochschild de son algèbre universelle enveloppante.
4

Equations fonctionnelles et algèbres de Lie

Petracci, Emanuela 14 January 2003 (has links) (PDF)
Dans cette thèse on a étudié plusieurs problèmes<br />algébriques relatifs à une superalgèbre de Lie qui peuvent être<br />réduits à la résolution d'une équation fonctionnelle. Cette<br />technique a permis d'obtenir des résultats qui sont nouveaux<br />aussi pour une algèbre de Lie ordinaire et qui sont indépendants<br />de la classification des algèbres de Lie.
5

Combinatoire et algorithmique des factorisations tangentes à l'identité / Combinatorics and algorithms for factorizations tangent to the identity

Kane, Ladji 27 June 2014 (has links)
La combinatoire a permis de résoudre certains problèmes en Mathématiques, en Physique et en Informatique, en retour celles-ci inspirent des questions nouvelles à la combinatoire. Ce mémoire de thèse intitulé "Combinatoire et algorithme des factorisations tangentes à l'identité" regroupe plusieurs travaux sur la combinatoire des déformations du produit de Shuffle. L'objectif de cette thèse est d'écrire des factorisations dont le terme principal est l'identité à travers l'utilisation d'outils portant principalement sur la combinatoire des mots (ordres, graduation etc.). Dans le cas classique, soit F une algèbre libre. En raison du fait que F est une algèbre enveloppante, on a une factorisation exacte de l'identité de End(F) = F*⨶F comme un produit infini d'exponentielles (End(F) étant muni du produit de Shuffle sur la gauche et de la concaténation sur la droite, une représentation fidèle du produit de convolution). La procédure est la suivante : premièrement on commence avec une base de Poincaré-Birkhoff-Witt, deuxièmement on calcule la famille des formes coordonnées et alors les propriétés (combinatoires) non triviales de ces familles en dualité donne la factorisation. Si on part de l'autre côté, l'écriture pour le même produit ne donne exactement l'identité que sous des conditions très restrictives que nous précisons ici. Dans de nombreux autres cas (déformés), la construction explicite des paires de bases en dualité nécessite une étude combinatoire et algorithmique que nous fournissons dans ce mémoire. / Combinatorics has solved many problems in Mathematics, Physics and Computer Science, in return these domains inspire new questions to combinatorics. This memoir entitled "Combinatorics and algorithmics of factorization tangent to indentity includes several works on the combinatorial deformations of the shuffle product. The aim of this thesis is to write factorizations wich principal term is the identity through the use of tools relating mainly to combinatorics on the words (orderings, grading etc). In the classical case, let F be the free algebra. Due to the fact that F is an enveloping algebra, one has an exact factorization of the identity of End(F) = F⨶F as an infinite product of exponentials (End(F) being endowed with the shuffle product on the left and the concatenation on the right, a faithful representation of the convolution product) as follows : first on begins with a PBW basis, second one computes the family of coordinate forms and then non-trivial (combinatorial) properties of theses families in duality gives the factorization. Starting from the other side and writing the same product does give exactly identity only under very restrictive conditions that we clarify here. In many other (deformed) cases, the explicit construction of pairs of bases in duality requires combinatorial and algorithmic studies that we provide in this memoir.

Page generated in 0.0277 seconds