Spelling suggestions: "subject:"iniversal kriging"" "subject:"niversal kriging""
1 |
A New Approach to Spatio-Temporal Kriging and Its ApplicationsAgarwal, Abhijat 28 July 2011 (has links)
No description available.
|
2 |
Spatial Distribution of Sulfate Concentration in Groundwater of South-Punjab, PakistanMubarak, N., Hussain, I., Faisal, Muhammad, Hussain, T., Shad, M.Y., AbdEl-Salam, N.M., Shabbir, J. 21 September 2016 (has links)
No / Sulfate causes various health issues for human if on average daily intake of sulfate is more than 500 mg from drinking-water, air, and food. Moreover, the presence of sulfate in rainwater causes acid rains which has harmful effects on animals and plants. Food is the major source of sulfate intake; however, in areas of South-Punjab, Pakistan, the drinking-water containing high levels of sulfate may constitute the principal source of intake. The spatial behavior of sulfate in groundwater is recorded for South-Punjab province, Pakistan. The spatial dependence of the response variable (sulfate) is modeled by using various variograms models that are estimated by maximum likelihood method, restricted maximum likelihood method, ordinary least squares, and weighted least squares. The parameters of estimated variogram models are utilized in ordinary kriging, universal kriging, Bayesian kriging with constant trend, and varying trend and the above methods are used for interpolation of sulfate concentration. The K-fold cross validation is used to measure the performances of variogram models and interpolation methods. Bayesian kriging with a constant trend produces minimum root mean square prediction error than other interpolation methods. Concentration of sulfate in drinking water within the study area is increasing to the Northern part, and health risks are really high due to poor quality of water.
|
3 |
Modelling heavy rainfall over time and spaceKhuluse, Sibusisiwe Audrey 06 June 2011 (has links)
Extreme Value Theory nds application in problems concerning low probability but high
consequence events. In hydrology the study of heavy rainfall is important in regional
ood
risk assessment. In particular, the N-year return level is a key output of an extreme value
analysis, hence care needs to be taken to ensure that the model is accurate and that the
level of imprecision in the parameter estimates is made explicit.
Rainfall is a process that evolves over time and space. Therefore, it is anticipated that
at extreme levels the process would continue to show temporal and spatial correlation. In
this study interest is in whether any trends in heavy rainfall can be detected for the Western
Cape. The focus is on obtaining the 50-year daily winter rainfall return level and investigating
whether this quantity is homogenous over the study area. The study is carried out in
two stages.
In the rst stage, the point process approach to extreme value theory is applied to arrive
at the return level estimates at each of the fteen sites. Stationarity is assumed for the
series at each station, thus an issue to deal with is that of short-range temporal correlation of
threshold exceedances. The proportion of exceedances is found to be smaller (approximately
0.01) for stations towards the east such as Jonkersberg, Plettenbergbay and Tygerhoek.
This can be attributed to rainfall values being mostly low, with few instances where large
amounts of rainfall were observed. Looking at the parameters of the point process extreme
value model, the location parameter estimate appears stable over the region in contrast to
the scale parameter estimate which shows an increase towards in a south easterly direction.
While the model is shown to t exceedances at each station adequately, the degree of uncertainty
is large for stations such as Tygerhoek, where the maximum observed rainfall value is
approximately twice as large as the high rainfall values. This situation was also observed at
other stations and in such cases removal of these high rainfall values was avoided to minimize
the risk of obtaining inaccurate return level estimates. The key result is an N-year rainfall
return level estimate at each site. Interest is in mapping an estimate of the 50-year daily
winter rainfall return level, however to evaluate the adequacy of the model at each site the
25-year return level is considered since a 25 year return period is well within the range of the
observed data. The 25-year daily winter rainfall return level estimate for Ladismith is the
smallest at 22:42 mm. This can be attributed to the station's generally low observed winter
rainfall values. In contrast, the return level estimate for Tygerhoek is high, almost six times
larger than that of Ladismith at 119:16 mm. Visually design values show di erences between
sites, therefore it is of interest to investigate whether these di erences can be modelled.
The second stage is the geostatistical analysis of the 50-year 24-hour rainfall return level The aim here is to quantify the degree of spatial variation in the 50-year 24-hour rainfall
return level estimates and to use that association to predict values at unobserved sites within
the study region. A tool for quantifying spatial variation is the variogram model. Estimation
of the parameters of this model require a su ciently large sample, which is a challenge in
this study since there is only fteen stations and therefore only fteen observations for the
geostatistical analysis. To address this challenge, observations are expanded in space and
time and then standardized and to create a larger pool of data from which the variogram is
estimated. The obtained estimates are used in ordinary and universal kriging to derive the
50-year 24-hour winter rainfall return level maps. It is shown that 50-year daily winter design
rainfall over most of the Western Cape lies between 40 mm and 80 mm, but rises sharply as
one moves towards the east coast of the region. This is largely due to the in
uence of large
design values obtained for Tygerhoek. In ordinary kriging prediction uncertainty is lowest
around observed values and is large if the distance from these points increases. Overall, prediction
uncertainty maps show that ordinary kriging performs better than universal kriging
where a linear regional trend in design values is included.
|
4 |
Regresní metody pro statistickou analýzu prostorových dat / Regression methods for statistical analysis of spatial dataKlimprová, Lucie January 2009 (has links)
Kriging techniques are regression methods used for evaluation of continuous spatial processes. If the covariance structure of process is unknown, then it's necessary to estimate it from the data. The first part of this Master's thesis is devoted to description the kriging method and to estimate of a variogram fuction, which describes the covariance structure of considered process. The second part includes the implementation of kriging method in MATLAB for simulated and real data.
|
5 |
Análisis Geoestadístico Espacio Tiempo Basado en Distancias y Splines con AplicacionesMelo Martínez, Carlos Eduardo 06 September 2012 (has links)
Se propusieron innovaciones en la predicción espacio y espacio-temporal, a partir de métodos geoestadísticos y de funciones de base radial (RBF), considerando métodos basados en distancias. En este sentido, por medio de las distancias entre las variables explicativas, incorporadas específicamente en la regresión basada en distancias, se propusieron modificaciones en: el método kriging universal y en la interpolación con splines espacial y espacio-temporal usando las RBF.
El método basado en la distancia se utiliza en un modelo Geoestadístico para estimar la tendencia y la estructura de covarianza. Esta estrategia aprovecha al máximo la información existente, debido a la relación entre las observaciones, mediante el uso de una descomposición espectral de una distancia seleccionada y las coordenadas principales correspondientes.
Para el método propuesto kriging universal basado en distancias (DBUK), se realizó un estudio de simulación que permitió comparar la capacidad predictiva del método tradicional kriging universal con respecto a kriging universal basado en distancias; mientras que en la interpolación con Splines espacial y espacio-temporal, los estudios de simulación permitieron comparar el funcionamiento de las funciones de base radial espaciales y espaciotemporales, considerando en la tendencia las coordenadas principales generadas a partir de las variables explicativas mixtas mediante el uso del método basado en distancias.
El método propuesto DBUK muestra, tanto en las simulaciones como en las aplicaciones, ventajas en la reducción del error con respecto al método clásico de krigeado universal. Esta reducción de los errores se asocia a una mejor modelización de la tendencia y a un menor error en el ajuste y modelado del variograma, al considerar las coordenadas principales obtenidas a partir de las variables explicativas mixtas. Entre muchas otras posibles causas, el error es generado por omisión de variables y por considerar formas funcionales incorrectas.
El estudio de simulación muestra que el método propuesto DBUK es mejor que el método de krigeado universal tradicional ya que se encontró una notoria reducción del error, asociada a un RMSPE más pequeño, esta reducción en general fue superior al 10%. El método DBUK podrá producir una mejor estimación de la variable regionalizada si el número de coordenadas principales se incrementa. Esto es posible, incluyendo las coordenadas principales más significativas tanto en modelo de tendencia como en el variograma; se presenta una aplicación que ilustra este hecho.
Los métodos propuestos de interpolación espacial basada en distancias con RBF (DBSIRBF) e interpolación espacio-temporal basada en distancias con RBF (DBSTIRBF) analizados mediante una estructura de krigeado considerando en la tendencia las coordenadas principales, presentan un buen funcionamiento al trabajar con vecindarios grandes, indicando en general que se tendrá un menor error asociado a un RMSPE más pequeño
En diversos estudios, la detección de variabilidad entre zonas es una tarea muy difícil, y por lo cual los métodos propuestos DBUK, DBSIRBF y DBSTIRBF son útiles de acuerdo a los resultados obtenidos en la tesis, ya que aprovechan al máximo la información existente asociada a las variables explicativas. Aunque la correlación de las variables explicativas puede ser baja con respecto a la variable respuesta, el punto clave en los métodos propuestos es la correlación entre las coordenadas principales (construida con las variables explicativas) y la variable respuesta.
Los métodos propuestos se aplicaron a datos agronómicos (Concentración de calcio medido a una profundidad de 0-20 cm de Brasil) y climatológicos (Temperaturas medias diarias de la Tierra en Croacia en el año 2008). Los resultados de validación cruzada “leave-one-out” mostraron un buen rendimiento de los predictores propuestos, lo cual indica que se pueden utilizar como métodos alternos y validos a los tradicionales para el modelado de variables correlacionadas espacialmente y espacio-temporalmente, considerando siempre covariables en la remoción de la tendencia. / Space-time geostatistical analysis based on distances and splines with applications.
Innovations were proposed in the space and space-time prediction, based on geostatistical methods and radial basis function (RBF), considering distance-based methods. In this sense, through the distances between the explanatory variables, specifically incorporated in the regression based on distances, changes were proposed in: the universal kriging and interpolation with space and space-time splines using RBF.
The distance-based method is used in a geostatistical model to estimate the trend and the covariance structure. This strategy takes full advantage of existing information, because of the relationship between the observations, using a spectral decomposition of a selected distance and the corresponding principal coordinates.
For the universal kriging method proposed based on distances (DBUK), we performed a simulation study, which allowed to compare the predictive capacity of traditional universal kriging over universal kriging based on distances. The simulation study shows that the proposed method DBUK, is better than the traditional universal kriging method and was found a marked reduction of error associated with a smaller RMSPE, this reduction was generally greater than 10%.
Spatial and spatio-temporal spline interpolation in simulation studies possible to compare the performance of space and spatio-temporal radial basis functions, considering the trend in the principal coordinates generated from the mixed explanatory variables using the method based distances.
The proposed spatial interpolation methods based on distances with RBF (DBSIRBF) and spatio-temporal interpolation based on distances RBF (DBSTIRBF) analyzed through kriging structure whereas in the trend the principal coordinates, show good performance when working with large neighborhoods, indicating that in general will have less error associated with a smaller RMSPE. The key point in the proposed methods is the correlation between the principal coordinates (constructed with the explanatory variables) and the response variable.
The proposed methods were applied to agronomic data (concentration of calcium measured at a depth of 0-20 cm from Brazil) and climatological (average daily temperature of the Earth in Croatia in 2008). The results of cross-validation "leave-one-out" showed a good performance of the proposed predictors, indicating that can be used as alternative methods to traditional and valid for the modeling of spatially correlated variables in space and time, always considering covariates in the removal of the trend.
|
6 |
Digital Soil Mapping of the Purdue Agronomy Center for Research and EducationShams R Rahmani (8300103) 07 May 2020 (has links)
This research work concentrate on developing digital soil maps to support field based plant phenotyping research. We have developed soil organic matter content (OM), cation exchange capacity (CEC), natural soil drainage class, and tile drainage line maps using topographic indices and aerial imagery. Various prediction models (universal kriging, cubist, random forest, C5.0, artificial neural network, and multinomial logistic regression) were used to estimate the soil properties of interest.
|
Page generated in 0.0576 seconds