• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ON COMMUTING MAPS OVER THE ALGEBRA OF STRICTLY UPPER TRIANGULAR MATRICES

Bounds, Jordan C. 18 July 2016 (has links)
No description available.
2

A-identidades polinomiais em algebras associativas / A-polynomial identities in associative algebras

Gonçalves, Dimas José 12 August 2018 (has links)
Orientador: Plamen Emilov Koshlukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T22:59:30Z (GMT). No. of bitstreams: 1 Goncalves_DimasJose_D.pdf: 561175 bytes, checksum: 463bf9f78a417a27d1bcf83549bc65a9 (MD5) Previous issue date: 2009 / Resumo: Nesta tese estudamos identidades polinomiais em álgebras associativas. Mais precisamente, estudamos as A-identidades satisfeitas por algumas classes importantes de álgebras. O primeiro resultado principal da tese consiste em uma descrição completa das A-identidades satisfeitas pela álgebra de Grassmann sobre um corpo algebricamente fechado e de característica o. Desta maneira respondemos em afirmativo a uma conjetura devida a Henke e Regev. Em seguida estudamos as A-identidades satisfeitas pela álgebra das matrizes triangulares superiores. Obtemos uma cota inferior para o grau mínimo de uma A-identidade satisfeita por tais álgebras. Como consequência obtemos uma resposta negativa a uma outra conjetura de Henke e Regev. Além disso, descrevemos as A-identidades de grau 5, da álgebra das matrizes triangulares superiores de ordem 2, e obtemos os graus mínimos de A-identidades satisfeitas por tais álgebras de ordem 3 e 4. / Abstract: In this PhD thesis we study polynomial identities in associative algebras. More precisely we study the A-ideIltities for several important classes of algebras. The first main result of the thesis gives a complete description of the A-identities for the Grassmann algebra over an algebraically closed field of characteristic O. In this way we give a positive answer to a conjecture due to Henke and Regev. Afterwards we study A-identities for the upper triangular matrix algebras. We give a lower bound for the minimal degree of an A-identity satisfied by such algebras. As a corollary we give a negative answer to another conjecture due to Henke and Regev. Furthermore we describe the A-identities of degree 5 for the upper triangular matrices of order 2 and compute the minimal degree of an A-identity for such algebras of order 3 and 4. / Doutorado / Algebra / Doutor em Matemática
3

A classification of localizing subcategories by relative homological algebra

Nadareishvili, George 16 October 2015 (has links)
No description available.

Page generated in 0.0623 seconds