Spelling suggestions: "subject:"urban wildlife"" "subject:"urban wildlifes""
1 |
The feasibility of utilizing the cellular infrastructure for urban wildlife telemetry /Stokely, John Matthews. January 2005 (has links) (PDF)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 2005. / Vita. Includes bibliographical references. Available also electronically on the Internet.
|
2 |
Evaluating the role of area, isolation, and human behavior on meso-mammals in a small statistical demographic areaPalode, Brittney 13 May 2022 (has links)
Urbanization offers unique challenges for wildlife. The urban landscape is fragmented and changes available resources for wildlife. Human-dominated landscapes can provide food, shelter, or cover through human-subsidized resources. However, to thrive in human-dominated landscapes, wildlife must adapt or disperse, otherwise they will die. In this study, I investigated how the urban landscape and human behavior influence urban wildlife occurrence. I established 35 camera sites during April 2020. I surveyed residential property dwellers around each camera site to determine what behavior they performed that could increase species occurrence. Gray fox and coyote site use decreased with increased isolation while no species responded to patch area. Almost all species investigated responded to attractants but not all showed a positive response. Although number of survey participants was small, site use by wildlife tended to increase with owning a bird feeder and putting out trash the day before pickup.
|
3 |
HISTORY OF THE EVOLUTION OF HUMANS AND THEIR EFFECTS ON WILDLIFEHUI, WINNIE K. 23 May 2005 (has links)
No description available.
|
4 |
Evaluating Campylobacter spp at the human-wildlife interfaceMedley, Sarah E. 05 November 2019 (has links)
Campylobacter spp. infections are an increasing global concern responsible for a significant burden of disease every year. Wildlife and domestic animals are considered important reservoirs, but little is known about host-factors driving pathogen infection dynamics in wild mammal populations. In countries like Botswana, there is significant spatial overlap between humans and wildlife with a large proportion of the population vulnerable to Campylobacter infection, making Botswana an ideal location to study these interactions. This thesis reviews mammalian wildlife species that have been identified as carriers of Campylobacter spp., identifies life-history traits (urban association, trophic level, and sociality) that may be driving Campylobacter infection, and utilizes banded mongoose (Mungos mungo) (n=201) as a study species to illuminate potential Campylobacter spp. transmission at the human-wildlife interface in northern Botswana. Results of the latter study suggest that human-landscapes are critical to C. jejuni infection in banded mongooses, as mongooses utilizing man-made structures as dens had significantly higher levels of C. jejuni than mongooses using natural dens (p=0.019). A similar association was found across all wild mammals with significantly greater number of urban dwelling species positive for C. jejuni than urban avoiders (p = 0.04). Omnivorous and social mammals were significantly associated with C. coli presence (p=0.04 and p<0.00 respectively), but not with C. jejuni indicating there may be important differences in transmission dynamics between Campylobacter species. These results suggest that landscape features and life-history traits can have important influences on Campylobacter species exposure and transmission dynamics in wildlife. / Master of Science / Campylobacter infections are increasing worldwide but we still know little about the true burden of disease in the developing world, and even less about the role of wildlife and environmental reservoirs in human exposure and disease. I reviewed life-history traits (urban association, animal rank on the food chain, and sociality) that might be driving Campylobacter spp. infection in wildlife and investigated interactions between an urbanizing wildlife species, banded mongoose (Mungos mungo), humans, and the environment. Banded mongooses live in close association with humans and infections with C. jejuni were greater among mongooses utilizing man-made structures compared to those using natural dens. Across all wild mammal species tested for Campylobacter spp., mammals associated with urban living were significantly more likely to be positive for C. jejuni than mammals that avoid urban areas. Lowerranking mammals on the food chain and social mammals were associated with presence of C. coli, suggesting life-history rates are playing a role in wild mammal exposures to the pathogen and that these exposures are different for C. coli than C. jejuni. These data suggest that wildlife life-history traits and utilization of human landscapes are important for pathogen presence. In turn, pathogen circulation and transmission in urbanizing wildlife reservoirs may increase human vulnerability to disease, particularly in impoverished populations, where greater environmental exposures are expected. Improvement of waste management and hygiene practices may help reduce transmission between wildlife and humans.
|
5 |
Wildlife all around us: A second grade guide to city wildlife educationPendegraft, Melanie Anne 01 January 2006 (has links)
This thesis provides opportunities for second grade students to explore, study, and apply critical thinking skills in reference to the local wildlife and current environmental issues.
|
6 |
Impacts of urbanisation and metal pollution on freshwater turtlesBrowne, Carol January 2005 (has links)
Doctor of Philosophy (PhD) / Over 85% of Australia’s population live in urban areas and many turtle populations occur on Australia’s east coast where urban development is particularly concentrated. In the state of NSW, over half of the freshwater coastal wetlands have been highly modified or completely destroyed, and urban freshwater creeks often have only a narrow strip of weedy bushland left along their banks. Even though habitat degradation may result in declines in density and distribution of turtle populations, there are few data on Australian freshwater turtles in urban areas. In addition to extreme habitat alteration, urban waterways are innundated with anthropogenic contaminants from sources including wet weather surface runoff and industrial and sewage discharges. Pollutants can impact all systems of the body with potentially severe effects on reproduction and survival that can result in deterioration of animal populations. Turtles are particularly susceptible to anthropogenic contaminants due to their intimate contact with the aquatic environment, an often high trophic level, their ability to accumulate toxins, and their longevity. For almost all contaminants, the degree of accumulation in and effect on reptile species is unknown. Sublethal effects in field situations are particularly poorly studied and have never been documented in pleurodiran turtles. As a pioneering work in Australian reptile ecotoxicology, this thesis takes a broad approach, but focuses primarily on immunotoxicity and reproductive toxicity – two areas that greatly impact the size and continuance of animal populations. The aim of the thesis is to provide baseline data on haematology, cellular immunology and tissue metal concentrations for freshwater turtles in Sydney – data which were lacking for all Australian turtle species prior to this study. After initial assessment of the distribution and density of freshwater turtles in Sydney, the study examines the potential for Sydney’s turtles as sentinel species for measuring the effects of pollution on haematology, cellular immunity, and parasite loads; and considers the relationships between urban metal pollution and reproductive variables. The relative suitability of non-lethally sampled tissues (blood, carapace, egg) for use in biomonitoring is also assessed. Three species of Australian freshwater turtles were found in the Sydney region, with Chelodina longicollis occurring naturally in the area, and populations of Emydura macquarii and Elseya latisternum likely to have originated from translocated individuals. The North American turtle Trachemys scripta elegans was not encountered during this study despite concerns that it was establishing in the Sydney area. Chelodina longicollis populations were widespread, although poor recruitmment was indicated by low capture rates and comparatively low percentage of juveniles at some sites. Not so widespread, Emydura macquarii was present in much larger numbers than C. longicollis and with a high juvenile component in some areas of southeastern Sydney. I provide information on erythrocyte and leucocyte parameters in C. longicollis over a range of sites, pollution conditions, and seasons. In C. longicollis, numbers of lymphocytes, heterophils and eosinophils varied over sites, but not due to pollution from sewage treatment plant outfalls. There was significant temporal variation in erythrocyte, lymphocyte, eosinophil, heterophil, and basophil number, the heterophil:lymphocyte ratio, and haematocrit, but not consistently among sites. Future studies should ensure simultaneous sampling across sites for comparative purposes. Similarly, turtle populations downstream of sewage treatment plant outfalls showed no consistent difference in number, body condition, blood haemogregarine load, or leech (haemogregarine vector) load from upstream populations. Leech (Helobdella papillornata, with some Placobdella sp.) load and haemogregarine numbers increase dramatically once C. longicollis reach a carapace of 110 mm. The number of leeches on turtles varied across season, year, and site. Turtles with large numbers of leeches had reduced haematocrit, but the presence of leeches had no other correlations with haematological parameters. Haemogregarine numbers did not change across season or year, and were not correlated with haematological variables. The hypothesis that pollutants lead to an increase in normal blood protozoa due to reduced immunity thus was not supported. The concentration of metals in C. longicollis and E. macquarii carapace and in lagoon sediments varied significantly over four urban and four national park sites, but not based on this split. Pollution in periurban areas, such as illegal dumping of toxic wastes and atmospheric deposition of pollutants, means that each site must be classified separately as to degree of metal pollution. There was little or no affect of species, size, sex, or gravidity on metal concentrations in the carapace of adult turtles. Emydura macquarii had higher concentrations of blood Fe than C. longicollis from a different site, but this is possibly due to an increase in haemoglobin resulting from the site’s low aquatic oxygen concentration rather than any increased environmental exposure. Chelid turtles in Sydney do not show much promise as a biomonitoring tool. Carapace analysis is largely discounted as a potential tool for metal biomonitoring due to poor correlations between potentially toxic metals in non-lethally samplable tissues (carapace, claw) and internal organs (liver, kidney) or bone (femur). However, carapace metal concentrations still potentially reflect long-term metal presence or different dietary exposures as evidenced by the significant variation in concentrations over sites. A rare correlation was found for concentrations of aquatic Pb and carapace Pb, and a correlation was also found for concentrations of blood Pb and carapace Pb in E. macquarii. Thus any potential for tissue biomonitoring seems to lie with this highly ecotoxicologically relevant metal. Although two other ecotoxicologically relevent metals, Cu and Se, were significantly higher in egg contents of C. longicollis compared to E. macquarii, these elements are also essential and a lack of baseline values means it is not known if this simply reflects natural taxonomic variation. Ni, a metal of toxicological concern in sea turtles, was not present in egg contents, and only variably present in eggshell. The absence of Pb from eggs, despite its presence in many maternal tissues, suggests that selective metal uptake into eggs may be protective of toxic elements, rather than eggs serving as a maternal method of toxic metal elimination as has been previously suggested. The paucity of toxic metal detection in eggs renders them unlikely tissues for biomonitoring. The maternal tissue or tissues or environmental source from which egg metals originate remains obscure, although a significant negative effect of maternal carapace concentrations of Ca and Mg on eggshell thickness in E. macquarii indicates that there may be mobilisation of Ca and Mg from the carapace for eggshell formation. The only metal whose eggshell concentration correlated with eggshell thickness was Mg, indicating that ecotoxic metals previously associated with eggshell thinning are not problematic in the Sydney chelids. As with North American turtles living at polluted sites, none of the chelid hatchlings were found to have any overt abnormalities. Hatching success was poor and hatching mass low for eggs of both C. longicollis and E. macquarii, although results from natural nests are required to determine whether or not this was an outcome of hormonally-induced oviposition and artificial incubation. It is difficult to interpret metal concentrations found in the soft tissues, calcified tissues, and eggs of chelonians due to the paucity of comparative data, and much more research is required on tissue metal concentrations before patterns will emerge. This especially applies to pleurodires for which no previous information is available. From comparisons with the limited data available for other freshwater turtles, marine turtles, and other aquatic reptiles, it does not appear that Sydney’s turtle populations have unusually high metal concentrations in tissues. Exclusion of toxic metals such as Pb from the egg may also be protective to the developing embryo. An ability to live in polluted habitats, while limiting the accumulation of toxic contaminants, may be one key to their persistence in urban waterways from which other freshwater fauna have disappeared. Reproductive impacts such as low embryo survival and small hatchling weights require more rigorous examination, but may have less effect on these animals which have such naturally high egg and hatchling mortality. Although it was generally hard to demonstrate biochemical, physiological or population impacts of contaminants, C. longicollis from a site with severe sewage pollution did display unusual alterations in a number of haematological variables, body condition, and carapace bone structure. Despite this, the population was large and had a comparatively high ratio of juveniles. Additionally, the adverse haematological alterations appeared reversible. Thus, successful populations in Sydney probably are more dependent on basic ecological needs being met, than on low levels of environmental contaminants. The ongoing persistence of chelid populations in Sydney is likely to be dependent to some extent on their opportunistic diets, which generally make animals less vulnerable to habitat modification and the reduction in prey item diversity following pollution (Mason 1996, Allanson & Georges 1999), with a further benefit possibly bestowed at some sites on E. macquarii by its omnivory.
|
7 |
Human-Wildlife Conflict Across Urbanization Gradients: Spatial, Social, and Ecological FactorsGilleland, Amanda H. 29 April 2010 (has links)
As suburban and exurban residential developments continue to multiply in urban areas, they encroach on wildlife habitats leading to increased human-wildlife interactions. The animals involved in direct conflict with homeowners are often relocated or exterminated by the homeowners. Often the homeowners contact state licensed wildlife trappers to eliminate the problem animal. In this study I examined how landscape, ecological, and social factors influence the incidence of human-wildlife conflict of thirty two residential areas in the Tampa, Florida metropolitan area. These residential areas, totaling over 300 km2, are part of the urban development gradient representing a range of urban land use from the urban core to exurban residential areas. This study consisted of four phases. In the first three phases, I investigated which landscape, ecological, and social factors contribute to homeowner conflict with wild animals on their property. In the last phase, I combine the significant factors contributing to human-wildlife conflict from the first three phases to build a more complete model.
A spatial analysis of the locations of human-wildlife conflict events recorded by licensed wildlife trappers showed the most significant development and landscape factors affecting human-wildlife conflict reporting in a residential area were human population density and total area of natural habitat immediately adjacent to the residential area. A survey of the relative abundance of conflict prone animals living near and in remnant patches of habitat in suburban residential areas revealed that greater abundance was not correlated with the reported conflict of that species within that residential area. Species that were social, omnivorous, and had some flexibility in home range size were involved most often in conflict in highly urbanized environments. Species that were less social, and were not omnivorous, were not significantly involved in human-wildlife conflict in highly urbanized residential areas. These species tended to be restricted to intermediately urbanized areas like suburban and exurban residential areas.
Several social factors were also significant contributors to human-wildlife conflict as revealed through personal interviews with suburban homeowners in Hillsborough and Pasco counties. Interviews confirmed that most people have positive attitudes toward wildlife, but some form of conflict was reported by thirty four percent of suburban residents, although only seventeen percent of those perceived it as a problem worth spending money to solve. Analysis of the attitudes of residents who reported having experienced problems associated with wildlife on their property, revealed significant negative correlations with statements of environmental concern and concern for the treatment of animals.
Using all the significant variables from the physical landscape, ecological evaluation, and the human attitude study in the suburbs, I developed a statistical model of human-wildlife conflict across the urbanization gradient. While the model has marginal success in terms of practical application for prediction, it is quite valuable for defining the importance of these variables in relation to conflict with certain types of species across the gradient. This set of papers collectively defines relationships between variables existing in urban, suburban, and exurban residential areas and human-wildlife conflict. These factors should be considered when planning new residential areas to minimize human-wildlife conflict while maximizing the residents’ enjoyment of natural areas and species within the residential area.
|
8 |
Impacts of urbanisation and metal pollution on freshwater turtlesBrowne, Carol January 2005 (has links)
Doctor of Philosophy (PhD) / Over 85% of Australia’s population live in urban areas and many turtle populations occur on Australia’s east coast where urban development is particularly concentrated. In the state of NSW, over half of the freshwater coastal wetlands have been highly modified or completely destroyed, and urban freshwater creeks often have only a narrow strip of weedy bushland left along their banks. Even though habitat degradation may result in declines in density and distribution of turtle populations, there are few data on Australian freshwater turtles in urban areas. In addition to extreme habitat alteration, urban waterways are innundated with anthropogenic contaminants from sources including wet weather surface runoff and industrial and sewage discharges. Pollutants can impact all systems of the body with potentially severe effects on reproduction and survival that can result in deterioration of animal populations. Turtles are particularly susceptible to anthropogenic contaminants due to their intimate contact with the aquatic environment, an often high trophic level, their ability to accumulate toxins, and their longevity. For almost all contaminants, the degree of accumulation in and effect on reptile species is unknown. Sublethal effects in field situations are particularly poorly studied and have never been documented in pleurodiran turtles. As a pioneering work in Australian reptile ecotoxicology, this thesis takes a broad approach, but focuses primarily on immunotoxicity and reproductive toxicity – two areas that greatly impact the size and continuance of animal populations. The aim of the thesis is to provide baseline data on haematology, cellular immunology and tissue metal concentrations for freshwater turtles in Sydney – data which were lacking for all Australian turtle species prior to this study. After initial assessment of the distribution and density of freshwater turtles in Sydney, the study examines the potential for Sydney’s turtles as sentinel species for measuring the effects of pollution on haematology, cellular immunity, and parasite loads; and considers the relationships between urban metal pollution and reproductive variables. The relative suitability of non-lethally sampled tissues (blood, carapace, egg) for use in biomonitoring is also assessed. Three species of Australian freshwater turtles were found in the Sydney region, with Chelodina longicollis occurring naturally in the area, and populations of Emydura macquarii and Elseya latisternum likely to have originated from translocated individuals. The North American turtle Trachemys scripta elegans was not encountered during this study despite concerns that it was establishing in the Sydney area. Chelodina longicollis populations were widespread, although poor recruitmment was indicated by low capture rates and comparatively low percentage of juveniles at some sites. Not so widespread, Emydura macquarii was present in much larger numbers than C. longicollis and with a high juvenile component in some areas of southeastern Sydney. I provide information on erythrocyte and leucocyte parameters in C. longicollis over a range of sites, pollution conditions, and seasons. In C. longicollis, numbers of lymphocytes, heterophils and eosinophils varied over sites, but not due to pollution from sewage treatment plant outfalls. There was significant temporal variation in erythrocyte, lymphocyte, eosinophil, heterophil, and basophil number, the heterophil:lymphocyte ratio, and haematocrit, but not consistently among sites. Future studies should ensure simultaneous sampling across sites for comparative purposes. Similarly, turtle populations downstream of sewage treatment plant outfalls showed no consistent difference in number, body condition, blood haemogregarine load, or leech (haemogregarine vector) load from upstream populations. Leech (Helobdella papillornata, with some Placobdella sp.) load and haemogregarine numbers increase dramatically once C. longicollis reach a carapace of 110 mm. The number of leeches on turtles varied across season, year, and site. Turtles with large numbers of leeches had reduced haematocrit, but the presence of leeches had no other correlations with haematological parameters. Haemogregarine numbers did not change across season or year, and were not correlated with haematological variables. The hypothesis that pollutants lead to an increase in normal blood protozoa due to reduced immunity thus was not supported. The concentration of metals in C. longicollis and E. macquarii carapace and in lagoon sediments varied significantly over four urban and four national park sites, but not based on this split. Pollution in periurban areas, such as illegal dumping of toxic wastes and atmospheric deposition of pollutants, means that each site must be classified separately as to degree of metal pollution. There was little or no affect of species, size, sex, or gravidity on metal concentrations in the carapace of adult turtles. Emydura macquarii had higher concentrations of blood Fe than C. longicollis from a different site, but this is possibly due to an increase in haemoglobin resulting from the site’s low aquatic oxygen concentration rather than any increased environmental exposure. Chelid turtles in Sydney do not show much promise as a biomonitoring tool. Carapace analysis is largely discounted as a potential tool for metal biomonitoring due to poor correlations between potentially toxic metals in non-lethally samplable tissues (carapace, claw) and internal organs (liver, kidney) or bone (femur). However, carapace metal concentrations still potentially reflect long-term metal presence or different dietary exposures as evidenced by the significant variation in concentrations over sites. A rare correlation was found for concentrations of aquatic Pb and carapace Pb, and a correlation was also found for concentrations of blood Pb and carapace Pb in E. macquarii. Thus any potential for tissue biomonitoring seems to lie with this highly ecotoxicologically relevant metal. Although two other ecotoxicologically relevent metals, Cu and Se, were significantly higher in egg contents of C. longicollis compared to E. macquarii, these elements are also essential and a lack of baseline values means it is not known if this simply reflects natural taxonomic variation. Ni, a metal of toxicological concern in sea turtles, was not present in egg contents, and only variably present in eggshell. The absence of Pb from eggs, despite its presence in many maternal tissues, suggests that selective metal uptake into eggs may be protective of toxic elements, rather than eggs serving as a maternal method of toxic metal elimination as has been previously suggested. The paucity of toxic metal detection in eggs renders them unlikely tissues for biomonitoring. The maternal tissue or tissues or environmental source from which egg metals originate remains obscure, although a significant negative effect of maternal carapace concentrations of Ca and Mg on eggshell thickness in E. macquarii indicates that there may be mobilisation of Ca and Mg from the carapace for eggshell formation. The only metal whose eggshell concentration correlated with eggshell thickness was Mg, indicating that ecotoxic metals previously associated with eggshell thinning are not problematic in the Sydney chelids. As with North American turtles living at polluted sites, none of the chelid hatchlings were found to have any overt abnormalities. Hatching success was poor and hatching mass low for eggs of both C. longicollis and E. macquarii, although results from natural nests are required to determine whether or not this was an outcome of hormonally-induced oviposition and artificial incubation. It is difficult to interpret metal concentrations found in the soft tissues, calcified tissues, and eggs of chelonians due to the paucity of comparative data, and much more research is required on tissue metal concentrations before patterns will emerge. This especially applies to pleurodires for which no previous information is available. From comparisons with the limited data available for other freshwater turtles, marine turtles, and other aquatic reptiles, it does not appear that Sydney’s turtle populations have unusually high metal concentrations in tissues. Exclusion of toxic metals such as Pb from the egg may also be protective to the developing embryo. An ability to live in polluted habitats, while limiting the accumulation of toxic contaminants, may be one key to their persistence in urban waterways from which other freshwater fauna have disappeared. Reproductive impacts such as low embryo survival and small hatchling weights require more rigorous examination, but may have less effect on these animals which have such naturally high egg and hatchling mortality. Although it was generally hard to demonstrate biochemical, physiological or population impacts of contaminants, C. longicollis from a site with severe sewage pollution did display unusual alterations in a number of haematological variables, body condition, and carapace bone structure. Despite this, the population was large and had a comparatively high ratio of juveniles. Additionally, the adverse haematological alterations appeared reversible. Thus, successful populations in Sydney probably are more dependent on basic ecological needs being met, than on low levels of environmental contaminants. The ongoing persistence of chelid populations in Sydney is likely to be dependent to some extent on their opportunistic diets, which generally make animals less vulnerable to habitat modification and the reduction in prey item diversity following pollution (Mason 1996, Allanson & Georges 1999), with a further benefit possibly bestowed at some sites on E. macquarii by its omnivory.
|
9 |
Birds and butterflies in Swedish urban and peri-urban habitats : a landscape perspective /Hedblom, Marcus, Söderström, Bo. January 2007 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2007. / Thesis documentation sheet inserted. Includes appendix of four papers and manuscripts co-authored with Bo Söderström. Includes bibliographical references. Also issued electronically via World Wide Web in PDF format; online version lacks appendix.
|
10 |
The Effect of Urbanization on Flight Initiation Distance and Alert Behaviors in WoodchucksLippmann, Kiersten Elizabeth 01 January 2009 (has links)
Animals that thrive in urban settings show a variety of adaptations to the highly disturbed, fragmented, and human-influenced environment present in cities. One adaptation is to decrease the flight response to human disturbance while increasing alert behaviors. This change increases fitness because frequent flight in response to increased human disturbance associated with a city environment would result in decreased foraging time, increased energy expenditure and increased stress levels. I tested the flight behavior of 66 woodchucks at various levels of urbanization and observed 20 woodchucks for vigilance behavior. I collected land-use and disturbance data on-site at each burrow, and recording these data in a binary code. I used hierarchical clustering to sort burrows based on similarity of landscape and behavioral features into 4 clusters of varying degrees of urbanization. Results showed that woodchucks in the urban clusters allowed a human to approach closer than rural woodchucks (i.e., shorter flight initiation distances). Although urban woodchucks spent less time fleeing, they spent more time alert while foraging, indicating increased vigilance. These results suggest that urban woodchucks have behavioral plasticity when exposed to the frequent disturbances present in urban environments. This plasticity is reflected in their ability to adjust flight behavior to minimize energy expenditure, while increasing alert behavior so that true threats can be identified.
|
Page generated in 0.0457 seconds