311 |
Burning velocity and OH concentration in premixed combustionYamashita, H., Hayashi, N., Ozeki, M., Yamamoto, K. January 2009 (has links)
No description available.
|
312 |
Local flame structure and turbulent burning velocity by joint PLIF imagingOhnishi, Masahiro, Isii, Shinji, Yamamoto, Kazuhiro January 2011 (has links)
No description available.
|
313 |
Estimation of velocity in underwater wireless channelsBlankenagel, Bryan 25 November 2013 (has links)
Underwater communication is necessary for a variety of applications, including transmission of diver speech, communication between manned and/or unmanned underwater vehicles, and data harvesting for environmental monitoring, to name a few. Examples of communication between underwater vehicles include unmanned or autonomous underwater vehicles (UUV or AUV) for deep water construction, military UUVs such as submarine drones, repair vehicles for deep water oil wells, scientific or resource exploration, etc. Examples of underwater communication between fixed submerged devices are sensor networks deployed on the ocean floor for seismic monitoring and tsunami prediction, pollution monitoring, tactical surveillance, analysis of resource deposits, oceanographic studies, etc. The underwater communication environment is a challenging one. Radio signals experience drastic attenuation, while optical signals suffer from dispersion. Because of these issues, acoustic (sound) signals are usually used for underwater communication. Unfortunately, acoustics has its own problems, including limited bandwidth, slow propagation, and signal distortion. Some of these limitations can be overcome with advanced modulation and coding, but to do so requires better understanding of the underwater acoustic propagation environment, which is significantly different than air- or space-based radio propagation. The underwater environment must be studied and characterized to exploit these advanced modulation and coding techniques. This thesis addresses some of these concerns by proposing a derivation of the envelope level crossing rate of the underwater channel, as well as a simulation model for the channel, both of which agree well with the measured results. A velocity estimator is also proposed, but suffers from a high degree of root mean square error
|
314 |
Slug Velocity Measurement and Flow Regime Recognition Using Acoustic Emission TechnologyAlssayh, Muammer Ali Ahmed 07 1900 (has links)
Slug velocity measurement and flow regime recognition using acoustic emission technology are presented. Two non-intrusive and three intrusive methods were employed to detect the slug regime and measure its velocity using AE sensors. For the non-intrusive methods, AE sensors were placed directly on the exterior of the steel pipe section of the test rig with and without clamps. The intrusive method involved using different waveguide configurations with the AE sensors flush with the inner wall of the pipe.
The experimental study presented investigated the application of Acoustic Emission (AE) technology for detecting slug velocity in addition to differentiating flow regime in two-phase (gas/liquid) flow in horizontal pipes. It is concluded that the slug velocity can be determined with acoustic emission (AE) sensors. The results were compared to slug velocities measured using high speed camera (HSC) and Ultrasound Transit Time (UST) techniques with good agreement between the three techniques at low gas void fraction (GVF). However, at high GVF (up to 95%) where the UST technique has limitations in application, the AE and HSC offered a good agreement. Flow regimes were also differentiated by using a combination of AE technology and Kolmogorov–Smirnov test technique. Stratified, slug and bubble regimes were recognised differentiated.
|
315 |
Hydraulic characteristics of embedded circular culvertsMagura, Christopher Ryan 14 September 2007 (has links)
This report details a physical modeling study to investigate the flow characteristics of circular corrugated structural plate (CSP) culverts with 10% embedment and projecting end inlets using a 0.62 m diameter corrugated metal pipe under a range of flows (0.064 m3/s to 0.254 m3/s) and slopes (0%, 0.5% and 1.0%). An automated sampling system was used to record detailed velocity measurements at cross-sections along the length of the model. The velocity data was then used to develop isovel plots and observations were made regarding the effect of water depth, average velocity, boundary roughness and inlet configuration on the velocity structure. Other key aspects examined include the distribution of shear velocity and equivalent sand roughness, Manning’s roughness, an evaluation of composite roughness calculation methods, secondary currents, area-velocity relationships, the effect of embedment on maximum discharge and a simulation of model results using HECRAS. Recommendations are presented to focus future research.
|
316 |
Measurements in Horizontal Air-water Pipe Flows Using Wire-mesh SensorsLessard, Etienne 10 April 2014 (has links)
This thesis is concerned with the performance and measurement uncertainty of wire-mesh sensors in different air-water flow regimes in horizontal pipes. It also presents measurements of void fraction and interfacial velocity in such flows. It was found that the interfacial velocity measurements of the wire-mesh sensors were in good agreement with those taken with a high-speed camera and estimates of the uncertainties of these measurements are presented. Drift-flux models were fitted to the measurements and it was found that the parameters of these models were not only sensitive to the flow regime, but also to the liquid superficial velocity.
|
317 |
Velocity of movement during ankle strength and power training with elastic resistance bands in older patients attending a day hospital rehabilitation programRajan, Pavithra 14 September 2011 (has links)
The purpose was to determine the velocity during strength and power training, with elastic resistance bands, in older adults. Nine older patients, who attended the day hospital rehabilitation program at Riverview Health Centre, were trained for power and strength of the ankle muscles using elastic resistance bands for 4 to 6 weeks. Training sessions were filmed to assess the velocity of training using Proanalyst software. Power training occurred at faster peak velocities as compared to strength training (p<0.001) for both muscle groups, however there were significant differences for average velocity only during training of plantar flexors (p<0.001). There was no significant difference between strength and power training in terms of within individual variability. However, a wide variability was observed between subjects in velocities they trained at and overlap was found between velocities for strength and power training. Hence, researchers should monitor velocity during different types of training in older adults.
|
318 |
Bubble Migration in Pore Networks of Uniform GeometryGhasemian, Saloumeh January 2012 (has links)
The behavior of bubbles migrating in porous media is a critical factor in several soil remediation operations such as in situ air sparging, supersaturated water injection, bioslurping, trench aeration and up-flow operation of moving bed sand filters as well as in the oil and gas industry. Groundwater aquifers are constantly polluted by human activity and a common threat to fresh water is the contamination by non-aqueous phase liquids (NAPL). In many NAPL removal technologies, gas bubbles carrying NAPL residuals move upwards through the water-saturated porous media and thus play an essential role in contaminant recovery. The mobilization of the residual oil blobs in oil reservoirs is another important application for rising bubbles in porous media. After an oil field is waterflooded, a significant fraction of oil, referred to as waterflood residual oil, remains trapped. A potential mechanism to recover this residual oil is the mobilization of oil by gas bubbles moving upwards in water-wet systems.
The main focus of this work was to measure the velocity of bubbles of various lengths during their migration through a water-wet porous medium. Experiments were conducted in a saturated glass micromodel with different test liquids, air bubbles of varying lengths and different micromodel elevation angles. More than a hundred experimental runs were performed to measure the migration velocity of bubbles as a function of wetting fluid properties, bubble length, and micromodel inclination angle. The results showed a linear dependency of the average bubble velocity as a function of bubble length and the sine of inclination angle of the model. Comparisons were made using experimental data for air bubbles rising in kerosene, Soltrol 170 and dyed White Oil. The calculated permeability of the micromodel was obtained for different systems assuming the effective length for viscous dissipation is equal to the initial bubble length. It was found that the calculated permeability had an increasing trend with increasing bubble length.
Laboratory visualization experiments were conducted for air bubbles in White Oil (viscosity of 12 cP) to visualize the periodic nature of the flow of rising bubbles in a pore network. The motion of the air bubbles in saturated micromodel was video-recorded by a digital camera, reviewed and analyzed using PowerDVD ™11 software. An image of a bubble migrating in the porous medium was obtained by capturing a still frame at a specific time and was analyzed to determine the bubble shape, the exact positions of the bubble front and bubble tail during motion and, thus, the dynamic length of the bubble. A deformation in the shape of the bubble tail end was observed for long bubbles. The dynamic bubble lengths were larger than the static bubble lengths and showed an increasing trend when increasing the angle of inclination. The dynamic bubble lengths were used to recalculate the bubble velocity and permeability. A linear correlation was found for the average bubble velocity as a function of dynamic bubble length.
Numerical simulation was performed by modifying an existing MATLAB® simulation for the rise velocity of a gas bubble and the induced pressure field while it migrates though porous media. The results showed that the rise velocity of a gas bubble is affected by the grid size of the pore network in the direction perpendicular to the bubble migration. In reality, this effect is demonstrated by the presence of other bubbles near the rising bubble in porous media. The simulation results showed good agreement with experimental data for long bubbles with high velocities. More work is required to improve the accuracy of simulation results for relatively large bubbles.
|
319 |
平板乱流境界層対数速度分布領域における変動速度確率密度関数の特性 (第2報, レイノルズ数依存性について)辻, 義之, TSUJI, Yoshiyuki, 宮地, 圭, MIYACHI, Kei, 中村, 育雄, NAKAMURA, Ikuo 03 1900 (has links)
No description available.
|
320 |
Determining the Terminal Velocity and the Particle Size of Epoxy Based Fluids in the WellboreTurkmenoglu, Hasan 2012 August 1900 (has links)
This thesis was inspired by the project funded by Bureau of Safety and Environment Enforcement (BSEE) to study the use of epoxy (or any cement alternative) to plug offshore wells damaged by hurricanes. The project focuses on non-cement materials to plug wells that are either destroyed or damaged to an extent where vertical intervention from the original wellhead is no longer possible. The proposed solution to this problem was to drill an offset well and intersect the original borehole at the very top and spot epoxy (or any suitable non-cement plugging material) in the original well. The spotted epoxy then would fall by gravitational force all the way down to the packer and then settle on top of the packer to plug the annulus of the damaged well permanently.
This thesis mainly concentrates on the factors affecting the fall rates and how to correlate them in order to derive an applicable test that can be conducted on the field or lab to calculate the terminal velocity of the known epoxy composition. Determining the settling velocity of the epoxy is crucial due to the fact that epoxy should not set prematurely for a better seal and isolation. The terminal velocity and the recovery for epoxy based plugging fluids were tested by using an experimental setup that was developed for this purpose. The results were also validated by using an alternative experiment setup designed for this purpose. Factors affecting the terminal velocity and recovery of epoxy were studied in this research since the settling velocity of the epoxy is crucial because epoxy should not set prematurely for a better seal and isolation. The study was conducted by using an experiment setup that was specially developed for terminal velocity and recovery calculations for plugging fluids. Results obtained from the experiment setup were successfully correlated to epoxy's composition for estimating the terminal velocity of the mixture.
|
Page generated in 0.0286 seconds