• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 516
  • 182
  • 85
  • 74
  • 61
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 7
  • 5
  • 5
  • Tagged with
  • 1152
  • 175
  • 143
  • 108
  • 102
  • 98
  • 78
  • 67
  • 59
  • 56
  • 55
  • 55
  • 54
  • 54
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

On the numerical solution of Fisher's and FitzHugh-Nagumo equations using some nite di erence methods

Agbavon, Koffi Messan January 2020 (has links)
In this thesis, we make use of numerical schemes in order to solve Fisher’s and FitzHugh-Nagumo equations with specified initial conditions. The thesis is made up of six chapters. Chapter 1 gives some literatures on partial differential equations and chapter 2 provides some concepts on finite difference methods, nonstandard finite difference methods and their proper-ties, reaction-diffusion equations and singularly perturbed equations. In chapter 3, we obtain the numerical solution of Fisher’s equation when the coefficient of diffu-sion term is much smaller than the coefficient of reaction (Li et al., 1998). Li et al. (1998) used the Moving Mesh Partial Differential Equation (MMPDE) method to solve a scaled Fisher’s equation with coefficient of reaction being 104 and coefficient of diffusion equal to one and the initial condition consisted of an exponential function. The problem considered is quite challeng-ing and the results obtained by Li et al. (1998) are not accurate due to the fact that MMPDE is based on familiar arc-length or curvature monitor function. Qiu and Sloan (1998) constructed a suitable monitor function called modified monitor function and used it with the Moving Mesh Differential Algebraic Equation (MMDAE) method in order to solve the same problem as Li et al. (1998) and better result were obtained. However, each problem has its own choice of monitor function which makes the choice of the monitor function an open question. We use the Forward in Time Central Space (FTCS) scheme and the Nonstandard Finite Difference (NSFD) to solve the scaled Fisher’s equation and we find that the temporal step size must be very small in order to obtain accurate results and comparable to Qiu and Sloan (1998). This causes the computational time to be long if the domain is large. We use two techniques to modify these two schemes either by introducing artificial viscosity or using the approach of Ruxun et al. (1999). These techniques are efficient and give accurate results with a larger temporal step size. We prove that these four methods are consistent with the partial differential equation and we also obtain the region of stability. Chapter 4 is an improvement and extension of the work from Namjoo and Zibaei (2018) whereby the standard FitzHugh-Nagumo equation with specified initial and boundary conditions is solved. Namjoo and Zibaei (2018) constructed two versions of nonstandard finite difference (NSFD1, NSFD2) and also derived two schemes (one explicit and the other implicit) constructed from the exact solution. However, they presented results using the nonstandard finite difference schemes only. We showed that one of the nonstandard finite difference schemes (NSFD1) has convergence issues and we obtain an improvement for NSFD1 which we call NSFD3. We per-form a stability analysis of the schemes constructed from the exact solution and found that the explicit scheme is not stable for this problem. We study some properties of the five methods (NSFD1, NSFD2, NSFD3, two schemes obtained using the exact solution) such as stability, positivity and boundedness. The performance of the five methods is compared by computing L1, L∞ errors and the rate of convergence for two values of the threshold of Affect effect, γ namely; 0.001 and 0.5 for small and large spatial domains at time, T = 1.0. Tests on rate of convergence are important here as we are dealing with nonlinear partial differential equations and therefore the Lax-Equivalence theorem cannot be used. In chapter 5, we consider FitzHugh-Nagumo equation with the parameter β referred to as in-trinsic growth rate. We chose a numerical experiment which is quite challenging for simulation due to shock-like profiles. We construct four versions of nonstandard finite difference schemes and compared the performance by computing L1, L∞ errors, rate of convergence with respect to time and CPU time at given time, T = 0.5 using three values of the intrinsic growth rate, β namely; β = 0.5, 1.0, 2.0. Chapter 6 highlights the salient features of this work. / Thesis (PhD)--University of Pretoria, 2020. / South African DST/NRF SARChI / Mathematics and Applied Mathematics / PhD / Unrestricted
242

Laboratory evaluation of surface treatments to asphaltic pavements in Mississippi

Jordan, Walter Stephens 01 May 2010 (has links)
Chip and scrub seal treatments are one of the most common pavement preservation practices, however, no performance specifications exist in Mississippi. Review of literature has shown the treatment of cores being successful in reducing the viscosity of aged asphalt pavements. The purpose of this thesis is to provide a basis for performance based specifications for surface treatments in Mississippi. This thesis provides information pertaining to viscosity, moisture loss, and frosted marble analysis of emulsions and the effects of rejuvenation after application of emulsions to aged asphalt pavements which are vital to the performance of the surface treatment. The objectives to this thesis are to determine and evaluate the effects of rejuvenation, frosted marble test, and moisture loss of emulsion applied to aged asphalt pavements. Results from these analysis’ are favorable for developing or providing a basis for performance based specifications for surface treatments applied in Mississippi.
243

The effect of pressure on the viscosity of polymer melts/

Nyun, Hla January 1974 (has links)
No description available.
244

Rheological characterization of polyethylene wire coating resins

Al-Bastaki, Nader Mohamed January 1982 (has links)
No description available.
245

Long-chain branched poly(lactic acid)- b-poly(lactide- co-caprolactone): Structure, viscoelastic behavior, and triple-shape memory effect as smart bone fixation material

Liu, Y., Cao, H., Ye, L., Coates, Philip D., Caton-Rose, Philip D., Zhao, X. 13 January 2021 (has links)
Yes / A novel fully biosbased poly(lactic acid)-b-poly(lactide-co-caprolactone) (PLA-b-PLCL) with a two-phase structure and long-chain branches was specifically designed and prepared through reactive melt processing. The results showed that PLCL segments were introduced onto PLA chains successfully. With the increase of PLCL content, the blockier distribution of LA/CL chain sequences of the sample was exhibited. PLA-b-PLCL showed two distinct thermal transitions, corresponding to the glass transition of PLA and PLCL domains, respectively, whereas the phase morphology changed from a sea-island to a co-continuous structure with increasing PLCL content. Because of the long-chain branched structure, PLA-b-PLCL samples showed a much higher viscoelasticity, strong molecular entanglement, and obvious strain-hardening behavior, resulting in a high draw ratio of the sample during orientation process, whereas the tensile strength and the modulus of the oriented sample reached up to 173 MPa and 5.4 GPa, respectively, which basically met the requirements of bone screws. Moreover, PLA-b-PLCL showed a triple-shape memory effect at 55 and 120 °C, respectively. For PLA-b-30 wt % PLCL, the recovery ratio can reach up to 98.1% under 55 °C, while high mechanical properties can be maintained, realizing self-reinforcement and self-fastening effect simultaneously as a smart bone fixation material.
246

Free Radical Polymerization of Styrene in a Batch Reactor up to High Conversion

Hui, Albert W. T. 07 1900 (has links)
<p> The transient behaviour of a batch stirred-tank reactor (BSTR) for free radical polymerization of styrene in toluene has been studied experimentally and theoretically. A kinetic model applicable to high conversions was developed using data from measurements of monomer conversion and molecular weight distribution (MWD). Significant improvement over the conventional kinetic model is obtained when the viscosity or gel effect is accounted for. The termination rate constant and catalyst efficiency are allowed to vary with viscosity. The findings agree with the general theory of diffusion-controlled reaction which predicts that viscosity is the most important parameter.</p> / Thesis / Master of Engineering (MEngr)
247

Effects of Temperature, Stress State, and Strain Rate on Flow and Fracture of Mg Metallic Glass and Viscous Fluids

Deibler, Lisa Anne 03 April 2009 (has links)
No description available.
248

Ultrasonic Degradation of Xanthan and Locust Bean Gums in Aqueous Solutions: Rheological and Kinetic Studies

Li, Ruoshi 21 February 2014 (has links)
No description available.
249

The effect of chocolate components and tempering on resistivity and viscosity

Ren, Shuai, Ren 11 August 2016 (has links)
No description available.
250

A simple algorithm for designing control systems and its applications in robotics

Yue, Liming January 1998 (has links)
No description available.

Page generated in 0.0432 seconds