• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A prototype high level hardware synthesis system

Collis, G. V. January 1987 (has links)
No description available.
2

Petri nets approach to test generation and analysis of hierarchically described digital circuits

Kadim, H. J. January 1993 (has links)
No description available.
3

Analysis of hardware descriptions

Singh, Satnam January 1991 (has links)
No description available.
4

Power supply noise management : techniques for estimation, detection, and reduction

Wu, Tung-Yeh 07 February 2011 (has links)
Power supply noise has become a critical issue for low power and high performance circuit design in recent years. The rapid scaling of the CMOS process has pushed the limit further and further in building low-cost and increasingly complex digital VLSI systems. Continued technology scaling has contributed to significant improvements in performance, increases in transistor density, and reductions in power consumption. However, smaller feature sizes, higher operation frequencies, and supply voltage reduction make current and future VLSI systems more vulnerable to power supply noise. Therefore, there is a strong demand for strategies to prevent problems caused by power supply noise. Design challenges exist in different design phases to reduce power supply noise. In terms of physical design, careful power distribution design is required, since it directly determines the quality of power stability and the timing integrity. In addition, power management, such as switching mode of the power gating technique, is another major challenge during the circuit design phase. A bad power gating switching strategy may draw an excessive rush current and slow down other active circuitry. After the circuit is implemented, another critical design challenge is to estimate power supply noise. Designers need to be aware of the voltage drop in order to enhance the power distribution network without wasting unnecessary design resources. However, estimating power supply noise is usually difficult, especially finding the circuit activity which induces the maximum supply noise. Blind search may be very time consuming and not effective. At post-silicon test, detecting power supply noise within a chip is also challenging. The visibility of supply noise is low since there is no trivial method to measure it. However, the supply noise measurement result on silicon is critical to debug and to characterize the chip. This dissertation focuses on novel circuit designs and design methodologies to prevent problems resulted from power supply noise in different design phases. First, a supply noise estimation methodology is developed. This methodology systematically searches the circuit activity inducing the maximum voltage drop. Meanwhile, once the circuit activity is found, it is validated through instruction execution. Therefore, the estimated voltage drop is a realistic estimation close to the real phenomenon. Simulation results show that this technique is able to find the circuit activity more efficiently and effectively compared to random simulation. Second, two on-chip power supply noise detectors are designed to improve the visibility of voltage drop during test phase. The first detector facilitates insertion of numerous detectors when there is a need for additional test points, such as a fine-grained power gating design or a circuit with multiple power domains. It focuses on minimizing the area consumption of the existing detector. This detector significantly reduces the area consumption compared to the conventional approach without losing accuracy due to the area minimization. The major goal of designing the second on-chip detector is to achieve self-calibration under process and temperature variations. Simulation and silicon measurement results demonstrate the capability of self-calibration regardless these variations. Lastly, a robust power gating reactivation technique is designed. This reactivation scheme utilizes the on-chip detector presented in this dissertation to monitor power supply noise in real time. It takes a dynamic approach to control the wakeup sequence according to the ambient voltage level. Simulation results demonstrate the ability to prevent the excessive voltage drop while the ambient active circuitry induces a high voltage drop during the wakeup phase. As a result, the fixed design resource, which is used to prevent the voltage emergency, can potentially be reduced by utilizing the dynamic reactivation scheme. / text
5

A New Method To Determine Optimal Time-Delays Between Switching Of Digital VLSI Circuits To Minimize Power Supply Noise

Srinivasan, G 06 1900 (has links)
Power supply noise, which is the variation in the supply voltage across the on-die supply terminals of VLSI circuits, is a serious performance degrader in digital circuits and mixed analog-digital circuits. In digital VLSI systems, power supply noise causes timing errors such as delays, jitter, and false switching. In microprocessors, power supply noise reduces the maximum operating frequency (FMAX) of the CPU. In mixed analog-digital circuits, power supply noise manifests as the substrate noise and impairs the performance of the analog portion. The decrease in the available noise margin with the decrease in the feature size of transistors in CMOS systems makes the power supply noise a very serious issue, and demands new methods to reduce the power supply noise in sub-micron CMOS systems. In this thesis, we develop a new method to determine optimal time-delays between the switching of input/output (I/O) data buffers in digital VLSI systems that realizes maximum reduction of the power supply noise. We first discuss methods to characterize the distributed nature of the Power Delivery Network (PDN) in the frequency-domain. We then develop an analytical method to determine the optimal delays using the frequency-domain response of the PDN and the supply current spectrum of the buffer units. We explain the mechanism behind the cancellation of the power supply noise by the introduction of optimal buffer-to-buffer delays. We also develop a numerical method to determine the optimal delays and compare it with the analytical method. We illustrate the reduction in the power supply noise by applying the optimal time-delays determined using our methods to two examples of PDN. Our method has great potential to realize maximum reduction of power supply noise in digital VLSI circuits and substrate noise in mixed analog-digital VLSI circuits. Lower power supply noise translates into lower cost and improved performance of the circuit.
6

Towards a Unified Framework for Design of MEMS based VLSI Systems

Sukumar, Jairam January 2016 (has links) (PDF)
Current day VLSI systems have started seeing increasing percentages of multiple energy domain components being integrated into the mainstream. Energy domains such as mechanical, optical, fluidic etc. have become all pervasive into VLSI systems and such systems are being manufactured routinely. The framework required to design such an integrated system with diverse energy domains needs to be evolved as a part of conventional VLSI design methodology. This is because manufacturing and design of these integrated energy domains although based on semiconductor processing, is still very ad-hoc, with each device requiring its dedicated design tools and process integration. In this thesis three different approaches in different energy domains, have been pro-posed. These three domains include modelling & simulation, synthesis & compilation and formal verification. Three different scenarios have been considered and it is shown that these tasks can be co-performed along with conventional VLSI circuits and systems. In the first approach a micro-mechanical beam bending case is presented. A thermal heat ow causing the beam to bend through thermal stress is analyzed for change in capacitance under a single analysis and modelling framework. This involves a seamless analysis through thermal, mechanical and electrical energy domains. The second part of the thesis explores synthesis and compilation paradigms. The concept of a Gyro-compiler analogous to a memory compiler is proposed, which primarily generates soft IP models for various gyro topologies. The final part of this thesis deals in showcasing a working prototype of a formal verification framework for MEMS based hybrid systems. The MEMS verification domain today is largely limited to simulation based verification. Many techniques have been proposed for formal verification of hybrid systems. Some of these methods have been extended to demonstrate, how MEMS based hybrid systems can be formally verified through ex-tensions of conventional formal verification methods. An adaptive cruise control (ACC) system with a gyro based speed sensor has been analyzed and formally verified for various specifications of this system.

Page generated in 0.0443 seconds