• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Leakage power driven behavioral synthesis of pipelined asics

Gopalan, Ranganath 01 June 2005 (has links)
Traditional approaches for power optimization during high level synthesis, have targetted single-cycle designs where only one input is being processed by the datapath at any given time. Throughput of large single-cycle designs can be improved by means of pipelining. In this work, we present a framework for the high-level synthesis of pipelined datapaths with low leakage power dissipation. We explore the effect of pipelining on the leakage power dissipation of data-flow intensive designs. An algorithm for minimization of leakage power during behavioral pipelining is presented. The transistor level leakage reduction technique employed here is based on Multi-Threshold CMOS (MTCMOS) technology. Pipelined allocation of functional units and registers is performed considering fixed data introduction intervals. Our algorithm uses simulated annealing to perform scheduling, allocation, and binding for obtaining pipelined datapaths that have low leakage dissipation.
2

Power supply noise management : techniques for estimation, detection, and reduction

Wu, Tung-Yeh 07 February 2011 (has links)
Power supply noise has become a critical issue for low power and high performance circuit design in recent years. The rapid scaling of the CMOS process has pushed the limit further and further in building low-cost and increasingly complex digital VLSI systems. Continued technology scaling has contributed to significant improvements in performance, increases in transistor density, and reductions in power consumption. However, smaller feature sizes, higher operation frequencies, and supply voltage reduction make current and future VLSI systems more vulnerable to power supply noise. Therefore, there is a strong demand for strategies to prevent problems caused by power supply noise. Design challenges exist in different design phases to reduce power supply noise. In terms of physical design, careful power distribution design is required, since it directly determines the quality of power stability and the timing integrity. In addition, power management, such as switching mode of the power gating technique, is another major challenge during the circuit design phase. A bad power gating switching strategy may draw an excessive rush current and slow down other active circuitry. After the circuit is implemented, another critical design challenge is to estimate power supply noise. Designers need to be aware of the voltage drop in order to enhance the power distribution network without wasting unnecessary design resources. However, estimating power supply noise is usually difficult, especially finding the circuit activity which induces the maximum supply noise. Blind search may be very time consuming and not effective. At post-silicon test, detecting power supply noise within a chip is also challenging. The visibility of supply noise is low since there is no trivial method to measure it. However, the supply noise measurement result on silicon is critical to debug and to characterize the chip. This dissertation focuses on novel circuit designs and design methodologies to prevent problems resulted from power supply noise in different design phases. First, a supply noise estimation methodology is developed. This methodology systematically searches the circuit activity inducing the maximum voltage drop. Meanwhile, once the circuit activity is found, it is validated through instruction execution. Therefore, the estimated voltage drop is a realistic estimation close to the real phenomenon. Simulation results show that this technique is able to find the circuit activity more efficiently and effectively compared to random simulation. Second, two on-chip power supply noise detectors are designed to improve the visibility of voltage drop during test phase. The first detector facilitates insertion of numerous detectors when there is a need for additional test points, such as a fine-grained power gating design or a circuit with multiple power domains. It focuses on minimizing the area consumption of the existing detector. This detector significantly reduces the area consumption compared to the conventional approach without losing accuracy due to the area minimization. The major goal of designing the second on-chip detector is to achieve self-calibration under process and temperature variations. Simulation and silicon measurement results demonstrate the capability of self-calibration regardless these variations. Lastly, a robust power gating reactivation technique is designed. This reactivation scheme utilizes the on-chip detector presented in this dissertation to monitor power supply noise in real time. It takes a dynamic approach to control the wakeup sequence according to the ambient voltage level. Simulation results demonstrate the ability to prevent the excessive voltage drop while the ambient active circuitry induces a high voltage drop during the wakeup phase. As a result, the fixed design resource, which is used to prevent the voltage emergency, can potentially be reduced by utilizing the dynamic reactivation scheme. / text
3

Theory of super power saving circuits and configurations for mixed signal CPU for smartcard application / Teori om extremt energisparande kretsar och konfigurationer för mixed signal CPU för smartcard applikation

Kleist, Anders January 2004 (has links)
<p>Designing an application specific integrated circuit (ASIC) must be starting with careful preparations, otherwise the chip will not be as good as possible. The theoretical studies must cover everything from the chip circuits to the application structure. In mobile applications there is extremely important that the current consumption becomes minimized because the battery power is limited. The power reductions studies must include the most power costing circuits on the chip. When the whole circuit or segments of the circuit is not in use, they must switch fast and simple into another mode that consume nearly none power. This mode is called sleep-mode. If the sleep-mode has very low leakage currents, the lifetime of the application will dramatically increase. </p><p>This report studies the most power costing circuits in smartcard application ASIC. The chip should be used to control a LCD display on the smartcard. The circuits that have been investigated are level shifters, charge pumps and LCD drivers, also sleep-mode configuration possibilities have been investigated. Other small preparing work is also included in the thesis.</p>
4

Theory of super power saving circuits and configurations for mixed signal CPU for smartcard application / Teori om extremt energisparande kretsar och konfigurationer för mixed signal CPU för smartcard applikation

Kleist, Anders January 2004 (has links)
Designing an application specific integrated circuit (ASIC) must be starting with careful preparations, otherwise the chip will not be as good as possible. The theoretical studies must cover everything from the chip circuits to the application structure. In mobile applications there is extremely important that the current consumption becomes minimized because the battery power is limited. The power reductions studies must include the most power costing circuits on the chip. When the whole circuit or segments of the circuit is not in use, they must switch fast and simple into another mode that consume nearly none power. This mode is called sleep-mode. If the sleep-mode has very low leakage currents, the lifetime of the application will dramatically increase. This report studies the most power costing circuits in smartcard application ASIC. The chip should be used to control a LCD display on the smartcard. The circuits that have been investigated are level shifters, charge pumps and LCD drivers, also sleep-mode configuration possibilities have been investigated. Other small preparing work is also included in the thesis.

Page generated in 0.0719 seconds