Spelling suggestions: "subject:"vacuum filtration"" "subject:"cacuum filtration""
1 |
Fine Coal DewateringBasim, Gul Bahar Jr. 15 December 1997 (has links)
Fine coal constitutes a relatively small portion of a product stream in a coal cleaning plant. However, its processing cost is approximately three times higher than the cost of processing coarse coal. Therefore, many coal companies chose to discard the fines to refuse ponds, causing a loss of profit and creating environmental concerns. This problem can be solved by developing more efficient fine coal dewatering processes, since bulk of the cost associated with processing fine coal is due to dewatering. For this reason, Virginia Tech has developed new chemicals that can increase the efficiency of mechanically dewatering coal fines.
To determine the performance of the novel reagents on fine coal dewatering, laboratory vacuum filtration and centrifugation tests were conducted. The utilization of the novel dewatering aids in the dewatering systems decreased the final moisture contents of the filter cakes to sufficiently low values. There was approximately 50% reduction in the cake moisture of many coal samples with the usage of the novel dewatering aids. The tests were performed on various coal samples from different coal preparation plants. This gave the advantage of testing the novel dewatering aids at many different conditions since each sample had its own characteristics.
The vacuum filtration tests were extensively used to compare the efficiency of each novel reagent in dewatering. The best performing dewatering aids were determined and they were further utilized to analyze the effects of operational variables, such as; drying cycle time, cake thickness, vacuum pressure level and slurry temperature on dewatering. A statistical analysis was also performed to observe the effect of each factor quantitatively. The analyses were very useful in terms of determining the synergistic effects of these factors in dewatering of fine coal.
The centrifuge tests were conducted to examine the efficiency of the novel reagents in a different dewatering application. The experimental results showed a significant improvement in centrifuge dewatering with the usage of proper coal sample. The moisture contents of fairly thick cakes decreased down to 5-10%. This outcome was very satisfactory since most of the dewatering aids commonly used in the coal industry were observed to increase the final cake moisture in centrifuge dewatering instead of decreasing it.
Finally, surface chemistry analyses were performed on the coal samples and slurries to analyze the changes in the chemistry of the dewatering system in the presence of the novel dewatering aids. It was observed that there was a favorable improvement in the system chemistry, which was helpful in terms of decreasing the cake moisture content. These observations were also consistent with the results of the dewatering tests. The combined effect of the novel additives in decreasing the surface tension of the slurry and increasing the contact angle of the coal surface at the same time was concluded to be the reason for their significant performance as dewatering aids. / Master of Science
|
2 |
Thermally enhanced colloidal processing of #alpha#-aluminaMurfin, Alice M. January 1995 (has links)
No description available.
|
3 |
Deposition Thickness Modeling and Parameter Identification for Spray Assisted Vacuum Filtration Process in Additive ManufacturingMark, August 01 January 2015 (has links)
To enhance mechanical and/or electrical properties of composite materials used in additive manufacturing, nanoparticles are often time deposited to form nanocomposite layers. To customize the mechanical and/or electrical properties, the thickness of such nanocomposite layers must be precisely controlled. A thickness model of filter cakes created through a spray assisted vacuum filtration is presented in this paper, to enable the development of advanced thickness controllers. The mass transfer dynamics in the spray atomization and vacuum filtration are studied for the mass of solid particles and mass of water in differential areas, and then the thickness of a filter cake is derived. A two-loop nonlinear constrained optimization approach is used to identify the unknown parameters in the model. Experiments involving depositing carbon nanofibers in a sheet of paper are used to measure the ability of the model to mimic the filtration process.
|
4 |
Nanomaterial-Based Electrochemical and Colorimetric Sensors for On-Site Detection of Small-Molecule TargetsGuntupalli, Bhargav 20 April 2017 (has links)
An ideal biosensor is a compact and in-expensive device that is able to readily and rapidly detects different types of analytes with high sensitivity and specificity. The affectability of a biosensing methodology is subject to the limit of nanomaterials to transduce the target binding process to an improved perceptible signal, while the selectivity is accomplished by considering the binding and specificity of certain moieties to their targets. Keeping these requirements in mind we have chosen nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) that has catalytic properties combined with their size, shape and configuration dependent chemical and physical properties as essential precursors and signaling components for creation of biosensors with tremendous sensitivity. The primary goal of the research work described in this dissertation is to develop and evaluate novel methods to detect various analytes using nanomaterials, at the same time making an affordable architecture for point-of-care (POC) applications. We report here in chapter 3 a simple and new strategy for preparing disposable, paper-based, porous AuNP/M-SWCNT hybrid thin gold films with high conductivity, rapid electron transfer rates, and excellent electrocatalytic properties to achieve multiple analyte electrochemical detection with a resolution that greatly exceeds that of purchased flat gold slides. We further explored the use of nanomaterial-based paper films in more complex matrices to detect analytes such as NADH, which can act as a biomarker for certain cellular redox imbalances and disease conditions. Carbon nanotubes with their large activated surfaces and edge-plane sites (defects) that are ideal for performing NADH oxidation at low potentials without any help of redox mediators minimizing surface fouling in complex matrices is described in chapter 4. With an instrument-free approach in mind we further focused on a colorimetric platform using split cocaine aptamers and gold nanoparticles (AuNPs) to detect cocaine for on-site applications as described in chapter 5. In chapter 5, the split aptamer sequences were evaluated mainly on three basic criteria, the hybridization efficiency, specificity towards the analyte (cocaine), and the reaction time to observe a distinguishable color change from red to blue. The assay is an enzyme-assisted target recycling (EATR) strategy following the principle that nuclease enzyme recognizes probe–target complexes, cleaving only the probe strand releasing the target for recycling. We have also studied the effect of the number of binding domains with variable chain lengths on either side of the apurinic (AP) site. On the basis of our results, we finally shortlisted the sequence combination with maximum signal enhancement fold which is instrumental in development of colorimetric platform with faster, and specific reaction to observe a distinctive color change in the presence of cocaine.
|
5 |
Étude de films de nanotubes de carbone dans le domaine de fréquences térahertz : propriété antiréfléchissanteDekermenjian, Maria 09 1900 (has links)
Les expériences de spectroscopie ont été réalisées en collaboration avec Jean-François Allard du groupe de Denis Morris de l'Université de Sherbrooke. / Le présent projet de maîtrise a pour but d’étudier les interactions optiques des films de nanotubes de carbone (FNTCs) avec les ondes THz. Des expériences d’absorption térahertz faites par spectroscopie THz dans le domaine temporel ont été entreprises sur les films dont l’épaisseur varie. Les films d’épaisseurs allant de 14 à 145 nm, sont des couches minces de nanotubes de carbone (NTCs) empilés les uns sur les autres et sont déposés sur substrats (GaAs et silicium). Une caractérisation comparative des épaisseurs des films est entreprise dans un premier temps par AFM et par ellipsométrie spectroscopique. À cause de la rugosité de la surface et de porosité des films qui compliquent les interactions de la lumière avec les films, les épaisseurs déterminées par AFM sont gardées au détriment de celles d’ellipsométrie. La relation entre les épaisseurs mesurées par AFM en fonction des épaisseurs nominales s’est révélée linéaire. Les couleurs des FNTC sont aussi caractérisées en fonction de leurs épaisseurs. L’expérience d’absorption THz sur les films consiste à enregistrer la transmission d’une impulsion THz à large bande à travers les échantillons. Sur les spectres, on détecte aussi l’impulsion de réflexion, l’écho de réflexion de l’impulsion principale THz à l’intérieur du substrat séparé par un délai temporel. La diminution du pic de l’impulsion principale THz en fonction de l’épaisseur est non linéaire et atteint une saturation pour les films les plus épais. Ce résultat est en lien direct avec les mesures quatre pointes de conductivité dc des films où l’inverse de la résistivité de feuille sature à partir des mêmes épaisseurs de film. L’écho de réflexion de l’impulsion principale à l’intérieur du substrat perd de l’amplitude plus rapidement en fonction de l’épaisseur à cause de près de deux passages supplémentaires de l’impulsion dans le film au moment de la réflexion. Finalement, une disparition de l’impulsion de réflexion à une épaisseur particulière de film (100 nm pour le GaAs et 60 nm pour le Si) démontre les propriétés antiréfléchissantes des FNTCs. / In the present masters project, the goal is to study the optical interactions of carbon nanotube films (CNTFs) with terahertz (THz) waves. The THz absorption experiments made by time domain THz spectroscopy have been undertaken on thickness-variable films. CNTFs, which have their thicknesses range from 14 to 145 nm, are thin CNT layers that are piled one on another are deposited on a substrate (GaAs or silicon). First, a comparative characterization of film thicknesses is undertaken with AFM and with spectroscopic ellipsometry. Because of surface rugosity and film porosity which has the effect of complexifying the interaction of light with the films, AFM thicknesses are held for the rest of the analysis instead of those determined with ellipsometry. AFM measured thicknesses scale linearly with respect to nominal thicknesses that are proportional to the CNT density. CNTFs’ colors reveal to be correlated with their thicknesses. THz absorption experiments consist of taking the transmission spectrum of a broad band THz pulse through the samples. On the spectra, we also detect the reflection pulse, which is the echo of the main THz pulse inside the substrate separated by a time delay. The decrease of the main THz pulse with respect to the film thickness is non linear and reaches a saturation plateau for the thickest films. This finding is in direct relationship with four-point probe sheet conductivity measurements made on the films where a saturation is also observed from the same thicknesses. The reflection pulse loses amplitude more rapidly as the film thickness increases because of two additional wave passages in the film during reflection. Lastly, a quenching of the reflection pulse which is observed at a particular film thickness (100 nm for GaAs and 60 nm for silicon) demonstrates antireflection properties for the CNTFs.
|
6 |
Carbon based nanomaterials as transparent conductive electrodesReiter, Fernando 19 May 2011 (has links)
Optically transparent carbon based nanomaterials including graphene and carbon nanotubes(CNTs) are promising candidates as transparent conductive electrodes due to their high electrical conductivity coupled with high optical transparency, can be flexed several times with minimal deterioration in their electronic properties, and do not require costly high vacuum processing conditions.
CNTs are easily solution processed through the use of surfactants sodium dodecyl sulfate(SDS) and sodium cholate(SC). Allowing CNTs to be deposited onto transparent substrates through vacuum filtration, ultrasonic spray coating, dip coating, spin coating, and inkjet printing. However, surfactants are electrically insulating, limit chemical doping, and increase optical absorption thereby decreasing overall performance of electrodes. Surfactants can be removed through nitric acid treatment and annealing in an inert environment (e.g. argon).
In this thesis, the impact of surfactant removal on electrode performance was investigated. Nitric acid treatment has been shown to p-dope CNTs and remove the surfactant SDS. However, nitric acid p-doping is naturally dedoped with exposure to air, does not completely remove the surfactant SC, and has been shown to damage CNTs by creating defect sites. Annealing at temperatures up to 1000°C is advantageous in that it removes insulating surfactants. However, annealing may also remove surface functional groups that dope CNTs. Therefore, there are competing effects when annealing CNT electrodes. The impacts on electrode performance were investigated through the use of conductive-tip atomic force microscopy, sheet resistance, and transmittance measurements.
In this thesis, the potential of graphene CNT composite electrodes as high performing transparent electrodes was investigated. As-made and annealed graphene oxide CNT composites electrodes were studied. Finally, a chemical vapor deposition grown graphene CNT composite electrode was also studied.
|
7 |
Étude de films de nanotubes de carbone dans le domaine de fréquences térahertz : propriété antiréfléchissanteDekermenjian, Maria 09 1900 (has links)
Le présent projet de maîtrise a pour but d’étudier les interactions optiques des films de nanotubes de carbone (FNTCs) avec les ondes THz. Des expériences d’absorption térahertz faites par spectroscopie THz dans le domaine temporel ont été entreprises sur les films dont l’épaisseur varie. Les films d’épaisseurs allant de 14 à 145 nm, sont des couches minces de nanotubes de carbone (NTCs) empilés les uns sur les autres et sont déposés sur substrats (GaAs et silicium). Une caractérisation comparative des épaisseurs des films est entreprise dans un premier temps par AFM et par ellipsométrie spectroscopique. À cause de la rugosité de la surface et de porosité des films qui compliquent les interactions de la lumière avec les films, les épaisseurs déterminées par AFM sont gardées au détriment de celles d’ellipsométrie. La relation entre les épaisseurs mesurées par AFM en fonction des épaisseurs nominales s’est révélée linéaire. Les couleurs des FNTC sont aussi caractérisées en fonction de leurs épaisseurs. L’expérience d’absorption THz sur les films consiste à enregistrer la transmission d’une impulsion THz à large bande à travers les échantillons. Sur les spectres, on détecte aussi l’impulsion de réflexion, l’écho de réflexion de l’impulsion principale THz à l’intérieur du substrat séparé par un délai temporel. La diminution du pic de l’impulsion principale THz en fonction de l’épaisseur est non linéaire et atteint une saturation pour les films les plus épais. Ce résultat est en lien direct avec les mesures quatre pointes de conductivité dc des films où l’inverse de la résistivité de feuille sature à partir des mêmes épaisseurs de film. L’écho de réflexion de l’impulsion principale à l’intérieur du substrat perd de l’amplitude plus rapidement en fonction de l’épaisseur à cause de près de deux passages supplémentaires de l’impulsion dans le film au moment de la réflexion. Finalement, une disparition de l’impulsion de réflexion à une épaisseur particulière de film (100 nm pour le GaAs et 60 nm pour le Si) démontre les propriétés antiréfléchissantes des FNTCs. / In the present masters project, the goal is to study the optical interactions of carbon nanotube films (CNTFs) with terahertz (THz) waves. The THz absorption experiments made by time domain THz spectroscopy have been undertaken on thickness-variable films. CNTFs, which have their thicknesses range from 14 to 145 nm, are thin CNT layers that are piled one on another are deposited on a substrate (GaAs or silicon). First, a comparative characterization of film thicknesses is undertaken with AFM and with spectroscopic ellipsometry. Because of surface rugosity and film porosity which has the effect of complexifying the interaction of light with the films, AFM thicknesses are held for the rest of the analysis instead of those determined with ellipsometry. AFM measured thicknesses scale linearly with respect to nominal thicknesses that are proportional to the CNT density. CNTFs’ colors reveal to be correlated with their thicknesses. THz absorption experiments consist of taking the transmission spectrum of a broad band THz pulse through the samples. On the spectra, we also detect the reflection pulse, which is the echo of the main THz pulse inside the substrate separated by a time delay. The decrease of the main THz pulse with respect to the film thickness is non linear and reaches a saturation plateau for the thickest films. This finding is in direct relationship with four-point probe sheet conductivity measurements made on the films where a saturation is also observed from the same thicknesses. The reflection pulse loses amplitude more rapidly as the film thickness increases because of two additional wave passages in the film during reflection. Lastly, a quenching of the reflection pulse which is observed at a particular film thickness (100 nm for GaAs and 60 nm for silicon) demonstrates antireflection properties for the CNTFs. / Les expériences de spectroscopie ont été réalisées en collaboration avec Jean-François Allard du groupe de Denis Morris de l'Université de Sherbrooke.
|
Page generated in 0.112 seconds