1 |
Atomic Force Microscopy Characterization of Nanocontacted III nitride NanostructuresAlmaghrabi, Latifah 11 1900 (has links)
A conductive atomic force microscopy (c-AFM) investigation of GaN nanostructures
is reported for strain engineering optoelectronic and piezotronic devices. The use of
AFM enables the simultaneous correlation between the surface morphology and
charge carrier transport through the nanostructures. The samples under
investigation are molecular beam epitaxy (MBE) grown InGaN/GaN nanowires on Ti
coated Mo substrate and GaN nanowires on ITO. The metal-semiconductor interface
between the metallic substrates and the GaN nanostructures form the bottom
contact. A Pt-Ir coated AFM probe is used to create a Schottky top nano-contact. The
two interfaces form a metal-semiconductor-metal (MSM) structure. Force and
temperature-dependent IV curves are obtained and analyzed, and the MSM
structure parameters are extracted. Modulation of both the conductivity and
Schottky barrier height (SBH) is revealed. Drastic reduction of the barrier is
observed to drive the junctions to ideal MSM under a combination of force and
temperature, revealing a dynamic and controlled two-way switching of the devices
from rectifying to ideal linear IV properties. Through compressive force modulation
by AFM tip, a symmetric 80 meV reduction in SBH at ±0.7 V is realized for the
sample grown on Mo. By a combination of temperature and force modulation, a 40
meV increase in SBH is achieved at 0.53 V for the sample on ITO. These results show
that the formed structure is ideal for applications in optoelectronics, sensing,
piezotronic, piezo-phototronic, and nano-energy harvesting devices.
|
2 |
Développements d'outils de caractérisations opto-électriques multi-échelles pour les dispositifs photovoltaïques organiquesRiviere, Guillaume Alexandre 17 February 2012 (has links)
Les cellules solaires organiques continuent leur essor dans le domaine du photovoltaïque, grâce aux structures et matériaux activement étudiés, pour tendre vers le maximum de rendement et passer le cap de l'industrialisation. La séparation de phase des matériaux qui constituent la couche photo-active des cellules à hétérojonction en volume gouverne en partie les performances de la cellule, ainsi que des phénomènes de recombinaison liés à la photo-conversion. Des moyens de caractérisation spécifiques sont nécessaires pour sonder les propriétés des cellules aussi bien à l'échelle microscopique qu'à l'échelle nanométrique. Des bancs de caractérisations opto-électriques pour les cellules solaires organiques ont alors été développés. Ainsi, la technique du courant induit par faisceau lumineux (LBIC) permet de visualiser l'uniformité des cellules avec une résolution de 50µm. La microscopie à force atomique en mode conduction (C-AFM) permet quant à elle de sonder les propriétés photo-électriques des cellules à l'échelle du nanomètre. / Organic solar cells are becoming more prominent in the photovoltaic field thanks to new materials and stacked structures. The active layer of bulk heterojunction solar cells is composed of an interpenetrating network of electron donor and acceptor materials. Vertical phase separation governs cells power conversion efficiency and recombination phenomena are still being studied. Specific characterization tools are necessary to gain insights into cell properties at the nanometer scale and at the molecular level. In this context, this thesis allowed the development of electrical characterization tools for bulk heterojunction organic solar cells based on polymer/fullerene blend. Thus, the Light Beam induced Current (LBIC) technique has been developed to check the current uniformity of the cells with a 50µm resolution. Conductive-AFM (C-AFM) has been used to probe the photovoltaic properties of the cells in the nanometer range.
|
3 |
Single molecule studies of seven transmembrane domain proteinsBerthoumieu, Olivia January 2011 (has links)
This work aimed at studying biophysical properties of two membrane proteins, one of potential nanotechnological use, bacteriorhodopsin, and one potential drug target, the NTS1 neurotensin receptor, at the single molecule scale. Bacteriorhodopsin (BR) is the only protein in the purple membrane (PM) of the halophilic organism Halobacterium salinarium. It is a light-driven proton pump converting light into a transmembrane proton gradient through isomerization of its retinal chromophore. Its stability, as well as its photoactivity remaining in dry protein layers, has made BR an attractive material for biomolecular devices. Numerous studies have been published on this topic; however, they have all used BR within the PM, on relatively large (µm-wide) surfaces. Here, conducting-probe atomic force microscopy (C-AFM) analysis was performed after removing most of the membrane lipids. For the first time, it was shown that the molecular conductance of BR can be reversibly photoswitched with predictable wavelength sensitivity. Intimate and robust coupling to gold electrodes was achieved by using a strategically engineered cysteine which, combined with partial delipidation, generated protein trimers homogenously orientated on the surface. Numerous controls using biophysical (SPR, ellipsometry, Kelvin-probe AFM) and chemical (photocurrent, cyclic voltammetry) techniques confirmed the wavelength specificity of the photoswitch, the anchoring role of the mutation and the homogenous orientation of the protein on the gold surface. Neurotensin is a brain and gastrointestinal 13 amino acid peptide acting as a neuromodulator in the central nervous system and as a hormone in the periphery. Its wide range of biological activities is primarily mediated through its binding to the neurotensin type 1 receptor (NTS1). NTS1 expressed in E.coli was purified and inserted into 100 nm brain polar lipid liposomes in a conformation which retained its ligand-binding capabilities. Initial AFM characterisation was performed as a prelude for ligand-receptor interaction studies, including high resolution imaging, force spectroscopy and solid state NMR approaches.
|
4 |
Characterization of as prepared and exposed Perovskitesolar cells by microscopic and spectroscopic techniquesGorella, Nagaraju January 2021 (has links)
Studying the microstructural features, optical, and electrical properties of the thin-filmperovskite solar cells (PSC) is the main objective of this thesis work. All the PSCs used in thisthesis work were prepared by spin coating assisted with gas quenching process and the samplesreceived from Interuniversity Microelectronics Centre (IMEC), Belgium.Microstructural and architectural details of the stagewise prepared PSCs were investigatedusing a Scanning Electron Microscope (SEM) - Focused Ion Beam (FIB) technique. With thereference to the given specification from IMEC, the SEM-FIB examinations of the as-preparedPSCs confirmed the presence of different layers such as hole transport layer (HTL), perovskitelayer, and electron transport layer (ETL). Further, the thickness of the perovskite layers wasmeasured and found to be 400 and 500 nm which validates the specification of the as-preparedsamples 1 and 2, respectively. The observed average grain size of the perovskite of the asprepared samples 1 and 2 are significantly different and the values are approximately 83 and169 nm, respectively. The average surface roughness values of perovskite layers (as-preparedsamples 1 and 2) and electron transport layer (as-prepared samples 3) were evaluated by atomicforce microscopy (AFM) and the values are 10, 19, and 12 nm, respectively. Furthermore, theconductive-AFM was performed to evaluate the electrical properties of the perovskite layers,and the results confirmed that the as-prepared sample 2 showed a higher mean current value of4.1 nA, than sample 1 resulted in 2.9 nA. The higher electrical performance of the as-preparedsample 2 could be correlated to the larger grain size, higher thickness, and higher surfaceroughness values of the perovskite layer.Moreover, the performance evaluation of a complete perovskite solar device with a similarconfiguration was evaluated between the as-prepared (newly fabricated) and the exposedsamples (tested under sunlight for ten weeks), and their behavior was studied. The optical andelectrical characteristics of the solar cell at the device level were examined with the help ofphotoluminescence (PL), electroluminescence (EL), and solar simulator techniques. The peakand fullwidth half maximum (FWHM) values of the PL emission spectra of the as-prepareddevice are in line with IMEC specification, whereas these values are slightly decreased for theexposed perovskite solar device. Also, during the EL examination, predominantly uniformluminescence was observed for the as-prepared device, whereas discontinuity in the emissionof electrons, and in some parts absence of luminescence-effect was observed for the exposedsolar cell. The current-voltage characteristics obtained from the solar simulator resultsconfirmed that the power conversion efficiency of the as-prepared device is at least 6 timeshigher than the exposed device. Based on the PL, EL, and PCE results it could be confirmedthat the perovskite solar cell exposed to sunlight for 10 weeks has started to degrade.
|
5 |
Supramolecular electronics : from molecular wires to (semi)conducting materials / Electronique supramoléculaire : des fils moléculaires aux matériaux (semi)conducteursMusumeci, Chiara 16 April 2014 (has links)
L'électronique supramoléculaires vise à construire et à étudier les propriétés optoélectroniques des architectures supramoléculaires à l'échelle nanométrique. L'objectif de cette thèse est d'obtenir le contrôle de l'organisation des systèmesmoléculaires organiques et de corréler leur structure avec les propriétés électriques, avec une attention particulière sur les propriétés à l'échelle nanométrique. Les stratégies exploitées nécessitent un design chimique adapté, un équilibre desinteractions intermoléculaires et d'interface, un contrôle sur la cinétique des processus et, éventuellement, l'exploitation des forces extérieures. Les résultats présentés montrent que la compréhension des propriétés locales d'un matériau sur une base à l'échelle nanométrique est un énorme défi fondamental vise à apporter des solutions à des questions scientifiques et technologiques, puisque les performances dans les appareils électroniques sont fortement dépendante de l'ordre au niveau supramoléculaire. / Supramolecular electronics aims to construct and investigate the optoelectronic properties of tailored supramolecular nanoarchitectures. The aim of this thesis is to get control over the organization of organic molecular systems and correlate their structure with the electrical properties, with particular attention at the nanoscale properties. The exploited strategies require a focused molecular design, the balancing of intermolecular and interfacial interactions, a control on the kinetics of the processes and possibly the exploitation of external forces. The presented results showed that understanding the local properties of a material on a nanoscale basis is a huge fundamental challenge to bring solutions to both scientific and technological issues, since in electronic devices the performances are strongly dependent on the order at the supramolecular level.
|
6 |
Photovoltaïque organique : étude des interactions électroniques aux interfaces des hétérojonctions organiques / Organic photovoltaics : study of electronic interactions at interfaces in organic heterojunctionsLe Borgne, Damien 04 October 2016 (has links)
Du fait de leur faible coût de production et de leur intégration possible sur substrat flexible, les cellules photovoltaïques organiques sont prometteuses pour répondre aux besoins futurs en énergie. Leurs performances reposent sur l'architecture de la cellule et sur la nature des matériaux choisis. Par conséquent, le contrôle à l'échelle nanométrique de la couche active (formation de nanodomaines purs, organisation moléculaire...), ainsi que le développement de nouvelles molécules aux propriétés électroniques et structurales optimisées apparaissent comme des paramètres clés. Dans ce contexte, les travaux présentés dans cette thèse visent à étudier le lien entre la morphologie des films minces et les propriétés de transport à l'échelle nanométrique en fonction des matériaux actifs utilisés. Pour cela deux voies ont été explorées. La première voie repose sur l'utilisation des propriétés d'auto-organisation des cristaux liquides pour améliorer la formation et l'organisation de nanodomaines. Pour cette étude, nous avons choisi d'associer un donneur d'électron classique, le poly-3-hexylthiophène (P3HT), et de le mélanger avec un complexe de nickel [Ni(4dopedt)2] possédant des propriétés cristallines liquides colonnaires. L'étude par Microscopie à Force Atomique (AFM), Conductive-AFM (C-AFM), absorption UV-visible et spectrométrie Raman des films de mélanges démontre l'effet structurant du cristal liquide sur les chaînes de P3HT, en fonction de l'épaisseur de la couche et des traitements thermiques effectués. La deuxième voie explorée repose sur l'ingénierie moléculaire. Suite à une étude bibliographique, nous avons conçu puis synthétisé différentes petites molécules fluorées capables d'agir comme accepteurs d'électrons. Leur synthèse est réalisée en plusieurs étapes, privilégiant une méthode de couplage innovante, l'hétéroarylation directe. Les molécules obtenues ont été caractérisées par les techniques analytiques classiques, puis soumises à une étude de relation structures/propriétés. D'une part, les analyses optiques, électrochimique et thermique ont révélé leur grande stabilité et leur intérêt potentiel pour l'application visée. D'autre part, leur étude en film mince, par spectroscopie d'absorption UV-visible, de fluorescence et par AFM, révèle l'influence de la substitution du squelette conjugué par des atomes de fluor ainsi que de la modification des chaînes alkyles des groupements terminaux sur les propriétés optoélectroniques et structurelles des molécules. / Organic solar cells appear as a promising technology to meet future energy requirements, owing to their low production costs, their great flexibility and their ability to be integrated into light devices. Their performances rely on their architecture and the nature of the chosen materials. As a consequence, two of the key parameters for their development are the control the active layer at a nanometric scale (molecular organisation and the formation of pure compound nanodomains) and the development of new small molecules with optimized electronic and structural properties. This work comes in that aim : the study of the relation between thin film morphology and transport properties at the nanometric scale as function of the chosen materials. Two ways have been explored. The first way relied on self-organisation properties of a liquid crystal for improving the formation and organisation of nanodomains. In this purpose, we have associated a well-known electron donor, the poly-3-hexylthiophene (P3HT), with a complex of nickel, named as [Ni(4dopedt)2], exhibiting columnar liquid crystal properties. Atomic Force Microscopy (AFM), Conductive-AFM (C-AFM), UV-visible absorption and Raman spectroscopy on bulk films have shown the structuring effect of the liquid crystal on the P3HT chains as a function of the films thicknesses and thermal annealing. The second way was based on molecular engineering. Following a bibliographic study, we have designed and synthetized different fluorinated small molecules with electron acceptor capability. For this, a more economical and cleaner synthesis technique has been employed: the direct arylation. These molecules have been characterized by classical analytic technics, and a study of the relation between structure and properties has been carried out. On the one hand, optical, electrochemical and thermal analyses have shown their good stability and their potential for the aimed application. On the other hand, their study in thin film by UV-visible absorption, fluorescence and AFM have shown the influence of backbone substitution by fluorine atoms as well as the impact of the nature of alkyl end chains on the optoelectronic and structural properties of these molecules.
|
7 |
Fabrication, Characterization, and Modelling of Self-Assembled Silicon Nanostructure Vacuum Field Emission DevicesBari, Mohammad Rezaul January 2011 (has links)
The foundation of vacuum nanoelectronics was laid as early as in 1961 when Kenneth Shoulders proposed the development of vertical field-emission micro-triodes. After years of conspicuous stagnancy in the field much interest has reemerged for the vacuum nanoelectronics in recent years. Electron field emission under high electric field from conventional and exotic nanoemitters, which have now been made possible with the use of modern day technology, has been the driving force behind this renewal of interest in vacuum nanoelectronics. In the research reported in this thesis self-assembled silicon nanostructures were studied as a potential source of field emission for vacuum nanoelectronic device applications.
Whiskerlike protruding silicon nanostructures were grown on untreated n- and p-type silicon surfaces using electron-beam annealing under high vacuum. The electrical transport characteristics of the silicon nanostructures were investigated using conductive atomic force microscopy (C-AFM). Higher electrical conductivities for the nanostructured surface compared to that for the surrounding planar silicon substrate region were observed. Non-ideal diode behaviour with high ideality factors were reported for the individual nanostructure-AFM tip Schottky nanocontacts. This demonstration, indicative of the presence of a significant field emission component in the analysed current transport phenomena was also detailed. Field emission from these nanostructures was demonstrated qualitatively in a lift-mode interleave C-AFM study.
A technique to fabricate integrated field emission diodes using silicon nanostructures in a CMOS process technology was developed. The process incorporated the nanostructure growth phase at the closing steps in the process flow. Turn-on voltages as low as ~ 0.6 V were reported for these devices, which make them good candidates for incorporation into standard CMOS circuit applications.
Reproducible I V characteristics exhibited by these fabricated devices were further studied and field emission parameters were extracted. A new consistent and reliable method to extract field emission parameters such as effective barrier height, field conversion factor, and total emitting area at the onset of the field emission regime was developed and is reported herein. The developed parameter extraction method used a unified electron emission approach in the transition region of the device operation. The existence of an electron-supply limited current saturation region at very high electric field was also confirmed.
Both the C-AFM and the device characterization studies were modelled and simulated using the finite element method in COMSOL Multiphysics. The experimental results – the field developed at various operating environments – are explained in relation to these finite element analyses. Field enhancements at the atomically sharp nanostructure apexes as suggested in the experimental studies were confirmed. The nanostructure tip radius effect and sensitivity to small nanostructure height variation were investigated and mathematical relations for the nanostructure regime of our interest were established. A technique to optimize the cathode-opening area was also demonstrated.
Suggestions related to further research on field emission from silicon nanostructures, optimization of the field emission device fabrication process, and fabrication of field emission triodes are elaborated in the final chapter of this thesis.
The experimental, modelling, and simulation works of this thesis indicate that silicon field emission devices could be integrated into the existing CMOS process technology. This integration would offer goods from both the worlds of vacuum and solid-sate nanoelectronics – fast ballistic electron transport, temperature insensitivity, radiation hardness, high packing density, mature technological backing, and economies of scale among other features.
|
8 |
Contribution à l'étude du transport et du stockage de charges dans des structures contenant des nanocristaux de germaniumGacem, Karim 11 December 2008 (has links) (PDF)
Le travail rapporté dans ce mémoire concerne la caractérisation électrique de nanocristaux de germanium (nc-Ge) élaborés par démouillage sur une couche de dioxyde de silicium. L'étude est réalisée sous deux formes : <br />En premier lieu, des mesures courant – tension (I-V) et capacité (haute fréquence ; 1 MHz) – tension (C-V) ont été effectuées pour caractériser des nanocristaux recouverts par du silicium amorphe. Les résultats ont montré l'apparition du blocage de Coulomb à température ambiante dans des nc-Ge ayant le plus petit (~3.5 nm) diamètre. Les mesures I-V et C-V ont révélé le phénomène de piégeage dans les nanocristaux. Ce dernier est conditionné par leur taille et densité moyennes, dont les effets ont été séparés grâce aux mesures en température. En conséquence, la variation en température du nombre moyen d'électrons piégés par nanocristal a permis d'accéder à une énergie d'activation thermique qui s'est révélée être dépendante de la taille moyenne (ou du gap) du nanocristal.<br />En deuxième lieu, des caractérisations par microscopie à force atomique en mode conducteur ont été effectuées sur des échantillons contenant des nc-Ge non recouverts. Là aussi, le transport et le piégeage ont été abordés en mettant en évidence l'effet de la taille et la densité moyennes des nc-Ge. Des mesures EBIC (courant induit par faisceau d'électrons) en champ proche (NF-) ont aussi été menées pour cartographier l'activité électrique en surface des échantillons. Elles ont été suivies par des mesures de la longueur effective de diffusion des porteurs minoritaires en excès. Les résultats ont montré que ce paramètre est réduit par la présence de nc-Ge et par l'augmentation de leur densité
|
9 |
Supramolecular electronics : from molecular wires to (semi)conducting materialsMusumeci, Chiara 16 April 2014 (has links) (PDF)
Supramolecular electronics aims to construct and investigate the optoelectronic properties of tailored supramolecular nanoarchitectures. The aim of this thesis is to get control over the organization of organic molecular systems and correlate their structure with the electrical properties, with particular attention at the nanoscale properties. The exploited strategies require a focused molecular design, the balancing of intermolecular and interfacial interactions, a control on the kinetics of the processes and possibly the exploitation of external forces. The presented results showed that understanding the local properties of a material on a nanoscale basis is a huge fundamental challenge to bring solutions to both scientific and technological issues, since in electronic devices the performances are strongly dependent on the order at the supramolecular level.
|
10 |
Atomic Force Microscope Conductivity Measurements of Single Ferritin MoleculesXu, Degao 08 December 2004 (has links) (PDF)
Conductive Atomic Force Microscope (c-AFM) was used to measure the conductivity of single horse spleen ferritin (HoSF) and azotobacter vinelandii bacterial ferritin (AvBF) molecules deposited on flat gold surfaces. A 500 micron diameter gold ball was also used as a contact probe to measure the conductivity of a thin film of ferritin molecules. The average current measured for holo HoSF was 13 and 5 times larger than that measured for apo HoSF as measured by c-AFM at 1V and gold ball at 2V and respectively, which indicates that the core of ferritin is more conductive than the protein shell and that conduction through the shell is likely the main factor limiting electron transfer. With 1 volt applied, the average electrical currents through single holo HoSF and single apo HoSF molecules were 2.6 pA and 0.19 pA respectively. Measurements on holo AvBF showed it was more than 10 times as conductive as holo HoSF, indicating that the protein shell of AvBF is more conductive than that of HoSF. The increased conductivity of AvBF is attributed to heme groups in the protein shell.
|
Page generated in 0.0265 seconds