• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 76
  • 51
  • 32
  • 15
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • Tagged with
  • 574
  • 72
  • 66
  • 61
  • 55
  • 52
  • 48
  • 44
  • 44
  • 43
  • 42
  • 41
  • 40
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Intercalados de pentóxido de vanádio com cucurbit[n]urilas e hemi-cucurbit[6]urila / Vanadium pentoxide intercalates with cucurbit[n]uril (CB[n]) and hemi-cucurbit[6]uril (HCB[6])

Silva, Francisco de Araújo 28 February 2014 (has links)
Compósitos de xerogel de pentóxido de vanádio (VXG) com cucurbit[6]urila (CB[6]), hemicucurbit[6]urila (HCB[6]) e oxovanadio(IV)cucurbit[6]urila (CB[6]VO) em diferentes concentrações foram preparados por mistura mecânica dos macrociclos com o gel de V2O5. Misturas homogêneas foram obtidas para quantidades até 10% em mol de CB[6] e HCB[6], e 1% de CB[6]VO. Estes macrociclos foram intercalados nos espaços interlamelares do VXG como mostram os dados de difração de raios-X (DRX), aumentando o espaço interlamelar e criando dois domínios cristalográficos distintos. As propriedades estruturais e composição destes intercalados foram estudadas por espectroscopia no infravermelho, análise termogravimétrica, microscopia eletrônica de varredura e microscopia de força atômica. Ensaios eletroquímicos mostraram que a capacidade específica de carga inicial do VXG (158 mA.h.g-1) melhora com a presença de CB[6] (168 mA.h.g-1), da HCB[6] (200 mA.h.g-1), e principalmente com CB[6]VO (230 mA.h.g-1), em filmes finos com baixa concentração dos macrociclos. Isto supera a capacidade de eletrodos de bateria comerciais. Nos intercalados com CB[6] a complexação dos íons Li+ com seus opérculos prejudica a reversibilidade na inserção/desinserção deste íon, diminuindo drasticamente a ciclabilidade de carga/descarga; a presença da HCB[6], que não complexa com o íon Li+, não sustenta a estrutura do VXG ao longo de vários ciclos, por não ser um macrociclo rígido. A presença de CB[6]VO parece estabilizar a estrutura do VXG oferencendo caminhos alternativos na difusão do íon Li+, que não complexa com os opérculos da CB obstruído pelo ion VO2+, aumentando a ciclabilidade, mantendo sua carga específica em aproximadamente 88% após 40 ciclos cronopotenciométricos. / Cucurbit[n]uril (CB[n]), hemi-cucurbit[6]uril (HCB[6]), and oxovanadium(IV)cucurbit[6]uril (CB[6]VO) vanadium pentoxide composites were prepared in several mole ratios by mechanically mixing the macrocycles and the V2O5 gel. Homogeneous mixtures were obtained for amounts as high as 10% in mol of CB[6] and HCB[6] and 1% of CB[6]VO. These macrocycles were intercalated in VXG interlamellar space as we could demonstrate with X-ray powder diffraction experiments (XRPD),which clearly show basal distance expansions and the formation of two crystallographic domains. The structural properties of such intercalates as well as their composition were studied with infrared spectroscopy, thermogravimmetric analysis, sweeping electron microscopy, and atomic force microscopy. Electrochemical experiments have shown that the initial specific charge capacity of VXG (158 mA.h.g1) was enhanced with the addition of CB[6] (168 mA.h.g1) and HCB[6] (200 mA.h.g1) and even more with (230 mA.h.g1) in thin films with low macrocycle amounts. These capacities exceed commercial batteries electrodes. Complexation of CB[6] with Li+ ions in CB[6]/VXG intercalates reduces considerably the reversibility of insertion/expulsion of this ion, reducing drastically its charge/discharge cyclability. The presence of HCB[6], who does not bind Li+ ions, is not rigid enough to sustain the oxide structure during many cycles. The presence of CB[6]VO seems to stabilize the VXG structure and offers alternative pathways for Li+ diffusion. It does not bind these ions since the occulli are occupied by VO2+ ions, enhancing cyclability. Its specific charge remains as high as 88% of the maximum charge capacity after 40 chronopotentiometric cycles.
292

Interactions of Vanadium Compounds With Reducing Equivalents: Evidence of Free Radical Involvement and Possible Mechanisms of Toxicity

Keller, Randal J. 01 May 1988 (has links)
Vanadium compounds have been reported to cause numerous toxicological effects including NAD(P)H oxidation and lipid peroxidation. The purpose of this thesis is to determine the active form of vanadium in causing these effects, and to determine any possible free radical involvement in these processes. Vanadium-stimulated oxidation of NADH was studied spectrophotometrically and by electron spin resonance spectroscopy. In 25 mM sodium phosphate buffer at pH 7. 4, vanadyl , (V(IV)), is slightly more effective in stimulating NADH oxidation than was vanadate (V(V)). Addition of a superoxide generating system, xanthine/xanthine oxidase, results in a marked increase in NADH oxidation by vanadyl, and to a lesser extent, by vanadate. In contrast, addition of hydrogen peroxide did not change the NADH oxidation by vanadate, but greatly enhanced NADH oxidation by vanadyl. Use of the spin trap DMPO in reaction mixtures containing vanadyl and hydrogen peroxide or a superoxide generating system resulted in the detection by ESR of hydroxyl radical. Hydroxyl radical was also detected in the system containing vanadate plus superoxide. It was found that superoxide is capable of reducing vanadate to vanadyl, and that vanadyl is capable of reaction with hydrogen peroxide in a Fenton-like mechanism to produce hydroxyl radical. Hydroxyl radical is suggested to be the active species involved in NADH oxidation. Other reductants, such as thiols, are also capable of supporting vanadate-stimulated NADH oxidation . The above results indicat that ability of vanadium to act in a Fenton-like mechanism is an important process in the vanadium-stimulated oxidation of NADH. Vanadyl was found to be the active form of vanadium involved in initiating and stimulating lipid peroxidation in purified and partially purified fatty acid micelle preparations. Hydroxyl radicals were shown to be involved in initiating diene conjugation when vanadyl and hydrogen peroxide were added together in the reaction mixture. Furthermore, hydroxyl radicals were shown to be generated in the vanadyl-catalyzed decomposition of fatty acid lipoperoxides. The results of this study indicat that the ability of vanadium compounds to oxidize NADH and to stimulate lipid peroxidation are related by the common mechanism of hydroxyl radical production from the reaction of vanadyl with hydrogen peroxide.
293

Adsorptive stripping voltammetry of trace elements on a glassy carbon mercury film electrode

Pablo, Fleurdelis, University of Western Sydney, Nepean, Faculty of Science and Technology January 1994 (has links)
This thesis describes the development of new adsorptive cathodic stripping voltammetric methods for reliable determination of some trace metals in biological and environmental materials on a glassy carbon mercury film electrode. In particular, the development of these methods involved selection of a suitable complexing agent for the respective metal ion studied, characterization of the electrode processes, investigation of factors affecting the voltammetric response such as concentration and pH of supporting electrolyte, concentration of complexing agent, accumulation potential, accumulation time and electrode rotation rate. Also, organic and inorganic interferences, linear concentration range, and detection limits were carefully considered. Furthermore, the analytical application of the method was demonstrated for each metal in biological and/or environmental materials, after optimization of the sample decomposition procedure. Some conclusions : the results obtained by the AdCSV method for the determination of tin in juices agreed reasonably with those obtained by atomic absorption method; the use of the adsorptive voltammetric technique after dry-ashing and UV treatment of the samples was successfully demonstrated for the determination of vanadium in standard reference materials such as urban particulate matter, peach leaves, apple leaves and bovine liver; and, the use of the adsorptive stripping voltammetric technique, after decomposition of samples by dry-ashing and UV treatment, was successfully demonstrated for the determination of molybdenum in peach leaves, apple leaves and bovine liver samples. / Doctor of Philosophy (PhD)
294

Bromine complexing agents for use in vanadium bromide (V/Br) redox flow cell

Poon, Grace, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The Vanadium bromide (V/Br) flow cell employs the Br3-/Br- couple in the positive and the V(II)/V(III) couple in the negative half cell. One major issue of this flow cell is bromine gas formation in the positive half cell during charging which results from the low solubility of bromine in aqueous solutions. Bromine complexing agents previously used in the zinc-bromine fuel cell were evaluated for their applicability in V/Br flow cell electrolytes. Three quaternary ammonium bromides: N-ethyl-N-methyl-morpholinium bromide (MEM), N-ethyl-N-methyl-pyrrolidinium bromide (MEP) and Tetra-butyl ammonium bromide (TBA) were studied. It is known that aqueous bromine reacts with quaternary ammonium bromides to form an immiscible organic phase. Depending on the number of quaternary ammonium bromides used and the environmental temperature, the second phase formed will either be solid or liquid. As any solid formation would interrupt the flow cell operation, potential formation of such kind has to be eliminated. Stability tests of simulated V/Br electrolyte with added quaternary ammonium bromides were carried out at 11, 25 and 40 oC. In the absence of bromine, the addition of MEM, MEP and TBA were found to be stable in V/Br electrolytes. However, in the presence of bromine, solid formation was observed in the bromine rich organic phase when the V/Br electrolyte contained a single quaternary ammonium bromide (QBr) compound. For V/Br electrolytes with binary or ternary QBr mixtures containing TBA, the presence of bromine caused a viscous polybromide phase to form at room temperature and the release of bromine gas at higher temperature. Only a binary mixture of MEM and MEP formed a stable liquid organic phase between 11 ?? 40 oC. In this study it was found that V/Br electrolytes containing a binary QBr mixture (0.75M) of MEM and MEP gave the best combination that formed an orange oily layer in the presence of bromine without solidification between 11 ?? 40oC. Furthermore, it was found that samples of V/Br electrolytes containing a ternary QBr mixture, are less effective in bromine capturing if the total QBr concentration was less than 1 M at 40oC, where bromine gas evolution was observed. From electrochemical studies of V3+/V2+, it was found that the addition of MEM and MEP had a minimal effect on the formal potential of the V3+/V2+ couple, the V2+/V3+ transfer coefficient and the diffusion coefficient of V3+. Therefore, MEM and MEP can be added to the negative half-cell of a V/Br flow cell without major interference From linear sweep voltammetry, the kinetics of the Br-/Br3- redox couple was found to be mass transfer controlled. After the addition of MEM and MEP mixture, the exchange current density was found to decrease from 0.013 Acm-2 to 0.01 Acm-2. On the other hand the transfer coefficient before and after MEM and MEP addition was found to be 0.5 and 0.44 respectively. Since the kinetic parameters were not significantly affected by the addition of MEM and MEP mixture, they can be added to the positive half-cell of the V/Br flow cell as bromine complexing agents. The electrochemical studies of both V3+/V2+ and Br-/Br3- showed the addition of MEM and MEP has minimal interference with the redox reactions of the vanadium bromide flow cell. This thesis also investigated the effect of MEM and MEP addition on the cell performance of a lab scale V/Br flow cell using two different membranes (ChiNaf and VF11). Flow cell performance for 2 M V3.7+ + 0.19 M MEM + 0.56 M MEP electrolytes utilising ChiNaf membrane at 10 mAcm-2 produced an energy efficiency of 59%, and this decreased to 43% after 15 cycles. For the static cell utilising VF11 membrane, the addition of MEM and MEP reduced the energy efficiency from 59.7% to 43.4%. It is believed that this is caused by the mass transfer controlled Br-/Br3- couple in the complexed positive half-cell solution. Therefore, uniformity between the organic and aqueous phase is important for flow cells utilising electrolytes with MEM and MEP. Finally, the polarization resistance of a lab scale V/Br flow cell utilising ChiNaf membrane and 2 M V3.7+ electrolytes was found to be slightly higher during cell charging (3.9 cm2) than during the discharge process (3.6 cm2), which is opposed to that in the all-vanadium redox cell.
295

A Study of Aluminium Nitride and Titanium Vanadium Nitride Thin Films

Taylor, Matthew Bruce, matthew.taylor@rmit.edu.au January 2007 (has links)
Thin film coatings are used to improve the properties of components and products in such diverse areas as tool coatings, wear resistant biological coatings, miniature integrated electronics, micro-mechanical systems and coatings for optical devices. This thesis focuses on understanding the development of intrinsic stress and microstructure in coatings of the technologically important materials of aluminium nitride (AlN) and titanium vanadium nitride (TiVN) deposited by filtered cathodic arc deposition. Thin films of AlN are fabricated under a variety of substrate bias regimes and at different deposition rates. Constant substrate bias was found to have a significant effect on the stress and microstructure of AlN thin films. At low bias voltages, films form with low stress and no preferred orientation. At a bias voltage of -200 V, the films exhibited the highest compressive stress and contained crystals preferentially oriented with their c axis in the plane of the film. At the highest bias of -350 V, the film forms with low stress yet continue to contain crystallites with their c axis constrained to lie in the plane of the film. These microstructure changes with bias are explained in terms of an energy minimisation model. The application of a pulsed high voltage bias to a substrate was found to have a strong effect on the reduction of intrinsic stress within AlN thin films. A model has been formulated that predicts the stress in terms of the applied voltage and pulsing rate, in terms of treated volumes known as thermal spikes. The greater the bias voltage and the higher the pulse rate, the greater the reduction in intrinsic stress. At high pulsing and bias rates, a strong preference for the c axis to align perpendicular to the substrate is seen. This observation is explained by dynamical effects of the incident ions on the growing film, encouraging channelling and preferential sputtering. For the first time, the effect of the rate of growth on AlN films deposited with high voltage pulsed bias was investigated and found to significantly change the stress and microstructure. The formation of films with highly tensile stress, highly compressive stress and nano-composites of AlN films containing Al clusters were seen. These observations are explained in terms of four distinct growth regions. At low rates, surface diffusion and shadowing causes highly porous structures with tensile stress; increased rates produced Al rich films of low stress; increasing the growth rate further led to a dense AlN film under compressive stress and the highest rates produce dense, low stress, AlN due to increased levels of thermal annealing. Finally this thesis analyses the feasibility of forming ternary alloys of high quality TiVN thin films using a dual cathode filtered cathodic arc. The synthesised films show exceptional hardness (greater than either titanium nitride or vanadium nitride), excellent mixing of the three elements and interesting optical properties. An optimum concentration of 23% V content was found to give the highest stress and hardness.
296

VO<sub>2</sub> films as active infrared shutters

Johansson, Daniel January 2006 (has links)
<p>An active optical shutter for infrared light (3-5 μm) has been designed, exploiting the phase transition in thermochromic vanadium dioxide (VO<sub>2</sub>). A spin coating processing route for VO<sub>2</sub> films has been adapted to manufacture reproducible depositions onto sapphire (Al<sub>2</sub>O<sub>3</sub>) substrates. The VO<sub>2</sub> films have been characterized by X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR), showing 55 % transmittance in the open mode and 0.1 % in the closed mode.</p><p>The VO<sub>2</sub> film temperature determines the operating mode of the shutter, and a resistive circuit of gold was deposited on top of the film for heating purposes. Switching times from the open to the closed mode down to 15 ms have been measured.</p><p>This work is a part of a comprehensive project at the Swedish Defence Research Agency (FOI), aiming to improve active components for protection against lasers. The shutter within this work is at this stage an early prototype, and needs further development and complementary systems such as a control unit to be implemented in an optical system.</p>
297

On Adhesion and Galling in Metal Forming

Hanson, Magnus January 2008 (has links)
<p>Metal forming is widely used in the industry to produce cans, tubes, car chassis, rods, wires etc. Forming certain materials such as stainless steel, aluminium and titanium, is often difficult, and problems associated with transfer of work material to the tool material are frequent. Transferred material may scratch and deform the following manufactured pieces, a phenomenon named galling. Lubricants can, to some degree, solve these problems. However, many forming oils are hazardous to the environment, and therefore it is highly desirable to replace them or get rid of them.</p><p>This thesis investigates the nature of the galling phenomenon and tries to explain under which conditions such problems arise. Dry sliding tests have been performed in a dedicated load-scanner equipment. Difficult work materials have been tested against tool materials under various conditions and the samples have then been studied by advanced analytical techniques, such as ESCA and TEM, to study the detailed tribological mechanisms occurring in the contact between work and tool material.</p><p>The general assumption is that material transfer only occurs when there is metal to metal contact. In this work it has been found that, for stainless steel, the oxide plays a very important role for the sticky behaviour of stainless steel, and that metal to metal contact is not a necessary condition for galling.</p><p>Several PVD-coated tool materials have been tested and it was found that vanadium nitride coatings can be tuned regarding their chemical composition, to be more galling resistant than conventional coatings.</p><p>The surface roughness of the tool material is very strongly coupled to the tools ability to resist galling. The smoother the tool surface, the less risk of material transfer and galling.</p><p>Some work materials, like aluminium and titanium, transfer to even the smoothest tool materials. A proposed explanation for this is that their oxides are much harder than the bulk material and the tool material matrix. When deforming the work material, the oxide will fracture into small hard scales, which can indent the tool material. Indented hard scales will then contribute to material transfer of more work material to the tool.</p>
298

Molekülmechanische und quantenchemische Berechnung der räumlichen und elektronischen Struktur von Vanadium(IV)- und Oxo-Rhenium(V)-Chelaten dreizähnig diacider Liganden

Jäger, Norbert January 1998 (has links)
In dieser Arbeit wurden die Molekülstrukturen und die elektronischen Eigenschaften von Vanadium(IV)- und Oxo-Rhenium(V)-Chelaten mit einem kombinierten molekülmechanisch-quantenchemischen Ansatz untersucht, um sterische und elektronische Effekte der Komplexierung mit einem theoretischen Modell zu quantifizieren. Es konnte gezeigt werden, daß auf diese Weise detaillierte Aussagen zu den Bindungsverhältnissen der Metallchelate getroffen werden können. Die Berechnung der Molekülstrukturen gelingt mit exzellenter Übereinstimmung mit den Kristallstrukturen der Komplexe. Die molekülmechanischen Berechnungen erfolgen auf der Grundlage des Extensible Systematic Force Field ESFF und des Consistent Force Field 91 (CFF91). Dabei konnte die hohe Flexibilität und Zuverlässigkeit des regelbasierten ESFF für eine Vielzahl verschiedenster Metallchelate nachgewiesen werden. Aufgrund der mangelhaften Ergebnisse für trigonal-prismatische Komplexgeometrien mit dem ESFF wurden eine Anpassung des CFF91 für derartige Vanadiumkomplexe vorgenommen. Auf Grundlage von theoretischen Ergebnissen wurden die alternativen Strukturen von isoelektronischen Vanadiumkomplexen berechnet und in Übereinstimmung mit experimentellen Daten, theoretischen Modellen der Komplexchemie und empirischen Fakten eine Hypothese für die Ursache der strukturellen Differenzen erarbeitet.<br> Der hier vorgestellte, kombinierte Algorithmus aus kraftfeldbasierter Geometrieoptimierung und single-point-Rechnung an diesen Strukturen ist ein zuverlässiger und relativ schneller Weg Molekülgeometrien von Metallkomplexen zu berechnen. Er kann somit zur Voraussagen von Komplexstrukturen und zur gezielten Modellierung definierter Koordinationsgeometrien verwendet werden. / In this work the molecular structures and the electronic properties of Vanadium(IV)- and Oxo-Rhenium(V)-chelates have been investigated to quantify steric and electronic effects of complexation. It has been shown, that in this way detailed insight can be gained into the bonding conditions of that metal complexes. Molecular mechanic calculations based on the Extensible Systematic Force Field (ESFF) and the Consistent Force Field 91 (CFF91) have been carried out. High flexibility and reliability of the rule based ESFF has been proven for a large variety of different metal chelates. Due to the poor ESFF-results for trigonal-prismatic complex geometries, a fit of the CFF91 for that species was done. Based on the theoretical results the alternative structure of isoelectronical vanadium(IV)- complexes have been calculated and a hypothesis on the reason for the structural differnces have been stated in accordance with experimental results, theoretical models of complex chemistry, and empirical facts. This combined approach of force field based geometry optimization and single point calculation at these structures has been proven to be a reliable and fast way to get molecular structures of metal complexes. It can be used to predict complex structures for modelling destinct coordination geometries.
299

On Adhesion and Galling in Metal Forming

Hanson, Magnus January 2008 (has links)
Metal forming is widely used in the industry to produce cans, tubes, car chassis, rods, wires etc. Forming certain materials such as stainless steel, aluminium and titanium, is often difficult, and problems associated with transfer of work material to the tool material are frequent. Transferred material may scratch and deform the following manufactured pieces, a phenomenon named galling. Lubricants can, to some degree, solve these problems. However, many forming oils are hazardous to the environment, and therefore it is highly desirable to replace them or get rid of them. This thesis investigates the nature of the galling phenomenon and tries to explain under which conditions such problems arise. Dry sliding tests have been performed in a dedicated load-scanner equipment. Difficult work materials have been tested against tool materials under various conditions and the samples have then been studied by advanced analytical techniques, such as ESCA and TEM, to study the detailed tribological mechanisms occurring in the contact between work and tool material. The general assumption is that material transfer only occurs when there is metal to metal contact. In this work it has been found that, for stainless steel, the oxide plays a very important role for the sticky behaviour of stainless steel, and that metal to metal contact is not a necessary condition for galling. Several PVD-coated tool materials have been tested and it was found that vanadium nitride coatings can be tuned regarding their chemical composition, to be more galling resistant than conventional coatings. The surface roughness of the tool material is very strongly coupled to the tools ability to resist galling. The smoother the tool surface, the less risk of material transfer and galling. Some work materials, like aluminium and titanium, transfer to even the smoothest tool materials. A proposed explanation for this is that their oxides are much harder than the bulk material and the tool material matrix. When deforming the work material, the oxide will fracture into small hard scales, which can indent the tool material. Indented hard scales will then contribute to material transfer of more work material to the tool.
300

Propriétés spectroscopiques et structure électronique du vanadium dans des matériaux complexes: Implications géologiques et technologiques

Bordage, Amélie 01 December 2009 (has links) (PDF)
Cette thèse a pour but d'étudier les propriétés spectroscopiques et la structure électronique du vanadium dans différents minéraux d'intérêt géologique et/ou technologique. Une approche expérimentale basée sur la spectroscopie HERFD-XAS au seuil K du vanadium a été combinée à une approche théorique. Cette dernière couple calculs ab initio et calculs multiélectroniques des spectres XANES, permettant une interprétation plus fine des spectres expérimentaux. Des développements théoriques basés sur les tenseurs sphériques et la méthode des cosets ont été effectués puis appliqués au cas de la section efficace d'absorption des rayons X, afin d'extraire les propriétés spectroscopiques du cristal à partir de celles d'un site individuel. La signature spectrale de V3+ dans le grossulaire (Ca3Al2(SiO4)3) a été déterminée grâce à la dépendance angulaire du préseuil de son spectre XANES. Ce minéral peut donc être utilisé de manière fiable comme composé de référence dans l'étude du degré d'oxydation du vanadium dans des verres, de minéraux et de composés synthétiques. Le vanadium peut être incorporé comme dopant dans l'anatase (TiO2 ) sous forme de vanadium tétravalent. Son environnement local dans l'anatase a été sondé, montrant que le vanadium n'est pas incorporé en substitution du titane. Enfin, le degré d'oxydation du vanadium dans les titanomagnétites (Fe3-xTixO4 :V) du Bushveld (Afrique du Sud) a été déterminé pour des échantillons naturels et synthétiques. La coexistence de deux degrés d'oxydation (+III et +IV) a été montrée mais les implications de leur variations relatives sur la formation des couches géantes de magnétite dans le Bushveld restent encore mal comprises.

Page generated in 0.0345 seconds