• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles bayésiens pour l’identification de représentations antiparcimonieuses et l’analyse en composantes principales bayésienne non paramétrique / Bayesian methods for anti-sparse coding and non parametric principal component analysis

Elvira, Clément 10 November 2017 (has links)
Cette thèse étudie deux modèles paramétriques et non paramétriques pour le changement de représentation. L'objectif des deux modèles diffère. Le premier cherche une représentation en plus grande dimension pour gagner en robustesse. L'objectif est de répartir uniformément l’information d’un signal sur toutes les composantes de sa représentation en plus grande dimension. La recherche d'un tel code s'exprime comme un problème inverse impliquant une régularisation de type norme infinie. Nous proposons une formulation bayésienne du problème impliquant une nouvelle loi de probabilité baptisée démocratique, qui pénalise les fortes amplitudes. Deux algorithmes MCMC proximaux sont présentés pour approcher des estimateurs bayésiens. La méthode non supervisée présentée est appelée BAC-1. Des expériences numériques illustrent les performances de l’approche pour la réduction de facteur de crête. Le second modèle identifie un sous-espace pertinent de dimension réduite à des fins de modélisation. Mais les méthodes probabilistes proposées nécessitent généralement de fixer à l'avance la dimension du sous-espace. Ce travail introduit BNP-PCA, une version bayésienne non paramétrique de l'analyse en composantes principales. La méthode couple une loi uniforme sur les bases orthonormales à un a priori non paramétrique de type buffet indien pour favoriser une utilisation parcimonieuse des composantes principales et aucun réglage n'est nécessaire. L'inférence est réalisée à l'aide des méthodes MCMC. L'estimation de la dimension du sous-espace et le comportement numérique de BNP-PCA sont étudiés. Nous montrons la flexibilité de BNP-PCA sur deux applications / This thesis proposes Bayesian parametric and nonparametric models for signal representation. The first model infers a higher dimensional representation of a signal for sake of robustness by enforcing the information to be spread uniformly. These so called anti-sparse representations are obtained by solving a linear inverse problem with an infinite-norm penalty. We propose in this thesis a Bayesian formulation of anti-sparse coding involving a new probability distribution, referred to as the democratic prior. A Gibbs and two proximal samplers are proposed to approximate Bayesian estimators. The algorithm is called BAC-1. Simulations on synthetic data illustrate the performances of the two proposed samplers and the results are compared with state-of-the art methods. The second model identifies a lower dimensional representation of a signal for modelisation and model selection. Principal component analysis is very popular to perform dimension reduction. The selection of the number of significant components is essential but often based on some practical heuristics depending on the application. Few works have proposed a probabilistic approach to infer the number of significant components. We propose a Bayesian nonparametric principal component analysis called BNP-PCA. The proposed model involves an Indian buffet process to promote a parsimonious use of principal components, which is assigned a prior distribution defined on the manifold of orthonormal basis. Inference is done using MCMC methods. The estimators of the latent dimension are theoretically and empirically studied. The relevance of the approach is assessed on two applications
2

Apprentissage de circuits quantiques par descente de gradient classique

Lamarre, Aldo 07 1900 (has links)
Nous présentons un nouvel algorithme d’apprentissage de circuits quantiques basé sur la descente de gradient classique. Comme ce sujet unifie deux disciplines, nous expliquons les deux domaines aux gens de l’autre discipline. Conséquemment, nous débutons par une présentation du calcul quantique et des circuits quantiques pour les gens en apprentissage automatique suivi d’une présentation des algorithmes d’apprentissage automatique pour les gens en informatique quantique. Puis, pour motiver et mettre en contexte nos résultats, nous passons à une légère revue de littérature en apprentissage automatique quantique. Ensuite, nous présentons notre modèle, son algorithme, ses variantes et quelques résultats empiriques. Finalement, nous critiquons notre implémentation en montrant des extensions et des nouvelles approches possibles. Les résultats principaux se situent dans ces deux dernières parties, qui sont respectivement les chapitres 4 et 5 de ce mémoire. Le code de l’algorithme et des expériences que nous avons créé pour ce mémoire se trouve sur notre github à l’adresse suivante : https://github.com/AldoLamarre/quantumcircuitlearning. / We present a new learning algorithm for quantum circuits based on gradient descent. Since this subject unifies two areas of research, we explain each field for people working in the other domain. Consequently, we begin by introducing quantum computing and quantum circuits to machine learning specialists, followed by an introduction of machine learning to quantum computing specialists. To give context and motivate our results we then give a light literature review on quantum machine learning. After this, we present our model, its algorithms and its variants, then discuss our currently achieved empirical results. Finally, we criticize our models by giving extensions and future work directions. These last two parts are our main results. They can be found in chapter 4 and 5 respectively. Our code which helped obtain these results can be found on github at this link : https://github.com/ AldoLamarre/quantumcircuitlearning.

Page generated in 0.0674 seconds