Spelling suggestions: "subject:"ariability"" "subject:"heariability""
61 |
Cognitive Biases and Autonomic Responding in Anxiety and DepressionSantucci, Aimee Kristin 10 May 2001 (has links)
The present study addressed cognitive biases in anxiety and depression using the emotional Stroop task, and explored both the affective space and autonomic underpinnings of these disorders. In previous studies, anxiety has been associated with both an attentional bias toward threat information and low cardiac vagal control, as reflected in heart rate variability (HRV) indices. Depression has been linked to a memory bias for negative information; however, findings of low HRV for depression are mixed. The high comorbidity of these disorders renders such findings as difficult to interpret. In the present study, it was hypothesized that the negative affect groups (anxious, depressed, comorbid anxious/depressed) would have lower vagally mediated HRV across tasks compared to the control group and that the anxiety and depression groups would show biases for group specific words on the Stroop task. Results for the Stroop tasks generally support previous findings of an attention bias in anxiety. The comorbid anxiety/depression group generally showed lower vagal control across tasks compared to the other groups, although comparisons between the "pure" anxiety and depression groups and the controls were not significant. It is suggested that this is because the comorbid group had higher depression and anxiety than either of the "pure" groups. / Master of Science
|
62 |
Analysis of Heart Rate Variability During Focal Parasympathetic Drive of the Rat BaroreflexBustamante, David J. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Autonomic control of the heart results in variations in the intervals between heart
beats, known as heart rate variability. One of the defining components of autonomic
control is the baroreflex, a negative feedback controller that balances heart rate and
blood pressure. The baroreflex is under constant command from the branches of the
autonomic nervous system. To better understand how the autonomic nervous system
commands the baroreflex, a baroreflex reflexogenic animal protocol was carried out.
Heart rate variability analysis and baroreflex sensitivity were used to quantify the
neural control of the heart. This thesis reconfirmed the existence of sexually dimorphic properties in the baroreflex through the use of heart rate variability analysis
and baroreflex sensitivity. It was discovered that there are many caveats to utilizing
heart rate variability analysis, which have to be addressed both in the experimental
protocol and the signal processing technique. Furthermore, it was suggested that the
slope method for quantifying baroreflex sensitivity also has many caveats, and that
other baroreflex sensitivity methods are likely more optimal for quantifying sustained
activation of the baroreflex. By utilizing various heart rate variability signal processing algorithms to assess autonomic tone in Sprague-Dawley rats during rest and
sustained electrical activation of the baroreflex, the null hypothesis was rejected.
|
63 |
The Antecedents and Consequences of Core Affect Variability at WorkChandler, Megan M. 17 July 2012 (has links)
No description available.
|
64 |
Variability of Soils Along a CatenaPaley, Marsha Lynn 08 1900 (has links)
<p> Several surface soil properties and topographical measures were studied at two hillslopes within the Crawford Lake Conservation Area. These measures were examined to establish any
interrelationships to support the catena concept proposed by Milne (1935).</p> <p> The results of the study show that no similar patterns as found by Anderson and Furley (1975) and which include a decrease in organic matter and increase in pH, carbonate content, or, finer particles downslope could be found. Other factors which could be found within a three-dimensional soil landscape and may influence the soil processes along a catena should also be adopted. This may then describe all relationships that could affect soil development across a hillslope.</p> / Thesis / Bachelor of Science (BSc)
|
65 |
Students' conceptual understanding of variablitySlauson, Leigh Victoria 07 January 2008 (has links)
No description available.
|
66 |
Analysis of Extreme Reversals in Seasonal and Annual Precipitation Anomalies Across the United States, 1895-2014Marston, Michael Lee 01 July 2016 (has links)
As population and urbanization increase across the United States, the effects of natural hazards may well increase, as extreme events would increasingly affect concentrated populations and the infrastructure upon which they rely. Extreme precipitation is one natural hazard that could stress concentrated populations, and climate change research is engaging heavy precipitation frequency and its impacts. This research focuses on the less-studied phenomenon of an extreme precipitation reversal - defined as an unusually wet (dry) period that is preceded by an unusually dry (wet) period. The magnitude is expressed as the difference in the percentiles of the consecutive periods analyzed. This concept has been documented only once before in a study that analyzed extreme precipitation reversals for a region within the southwestern United States. That study found that large differences in precipitation from consecutive winters, a hydrologically critical season for the region, occurred more frequently than what would be expected from random chance, and that extreme precipitation reversals have increased significantly since 1960. This research expands upon the previous work by extending the analysis to the entire continental United States and by including multiple temporal resolutions.
Climate division data were used to determine seasonal and annual precipitation for each of nine climate regions of the continental United States from 1895-2014. Precipitation values were then ranked and given percentiles for seasonal and annual data. The season-to-season analysis was performed in two ways. The first examined consecutive seasons (e.g., winter–spring, spring–summer) while the second analyzed the seasonal data from consecutive years (e.g., spring 2014–spring 2015). The annual data represented precipitation for the period October 1–September 30, or the 'water year' used by water resource managers. Following the approach of the previous study, a secondary objective of the research was to examine large-scale climate teleconnections for historical relationships with the occurrence of precipitation reversals. The El Nino-Southern Oscillation was chosen for analysis due to its well-known relationships with precipitation patterns across the United States. Results indicate regional expressions of a propensity for extreme precipitation reversals and relationships with teleconnections that may afford stakeholders guidance for proactive management. Precipitation reversal (PR) and extreme precipitation reversal (EPR) values were significantly larger for the second half of the study period for the western United States for the winter-to-winter, spring-to-spring, and year-to-year analyses. The fall-to-fall analysis also revealed changes in PR/EPR values for several regions, including the northwest, the Northern Rockies and Plains, and the Ohio Valley. Relationships between the winter-to-winter PR time series and an index representing the El Nino-Southern Oscillation (ENSO) phenomenon were examined. The winter-to-winter PR time series of the Northern Rockies and Plains region and the South exhibited significant relationships with the time series of Niño 3.4 values. El Niño (La Niña) coincided with more wet-to-dry (dry-to-wet) PR/EPR values for the Northern Rockies and Plains, while El Niño (La Niña) coincided with more dry-to-wet (wet-to-dry) PR/EPR values for the South. / Master of Science
|
67 |
Morfologická a genetická variabilita v populacích Gymnadenia conopsea agg. / Morphological and genetic variation in populations of Gymnadenia conopsea agg.KOLOUŠKOVÁ, Pavla January 2010 (has links)
The complex Gymnadenia conopsea s.l. represents a very problematic group in terms of taxonomy, showing a wide morphological, phenological, genetical and cytogenetical variability. The aggregate G. conopsea encompasses a range of taxa, two of which, G. conopsea (L.) R. Br. s.s. and G. densiflora (Wahlenb.) A. Dietr., have been acknowledged as beeing a species level. Individual taxa cannot be safely distinguished on the basis of morphological characteristics in all cases. Recently, there has been a lot of discussion concerning the taxonomical value of taxons within the G. conopsea complex. The complex is represented by a variety of cytotypes, while the major tetraploid cytotypes represent the above mentioned G. conopsea and G. densiflora taxa, that are easily distinguishable by means of flow cytometry. The taxonomical classification of minority cytotypes is not clear. For these reasons, to be able to obtain more detailed information, an application of different approaches from the field of morphology, cytogenetics and molecular genetics is suitable when evaluating the populations. In this thesis, morphological characteristics, AFLP and an analysis of microsatellites along with a measurement of ploid level using FCM have been used for evaluation. On the basis of evaluating a multidimensional cluster analysis and a dendrogram created by the UPGMA method combining these data, a specific dissimilarity of the G. densiflora and G. conopsea taxon has been confirmed. Based on the comparative analysis of microsatellite loci and overlapping morphometric characteristics of tetraploid and octoploid G. conopsea cytotype it can be assumed that the octoploid cytotype is a separate chromosomal aberration of tetraploid plants.
|
68 |
Intraseasonal Variability Of The Northeast Indian Ocean Circulation In An Ocean ModelSenan, Retish 07 1900 (has links) (PDF)
No description available.
|
69 |
Gestion de la variabilité au niveau du code : modélisation, traçabilité et vérification de cohérence / Handling variability at the code level : modeling, tracing and checking consistencyTërnava, Xhevahire 01 December 2017 (has links)
Durant le développement de grandes lignes de produits logiciels, un ensemble de techniques d’implémentation traditionnelles, comme l’héritage ou les patrons de conception, est utilisé pour implémenter la variabilité. La notion de feature, en tant qu’unité réutilisable, n’a alors pas de représentation de première classe dans le code, et un choix inapproprié de techniques entraîne des incohérences entre variabilités du domaine et de l’implémentation. Dans cette thèse, nous étudions la diversité de la majorité des techniques d’implémentation de la variabilité, que nous organisons dans un catalogue étendu. Nous proposons un framework pour capturer et modéliser, de façon fragmentée, dans des modèles techniques de variabilité, la variabilité implémentée par plusieurs techniques combinées. Ces modèles utilisent les points de variation et les variantes, avec leur relation logique et leur moment de résolution, pour abstraire les techniques d’implémentation. Nous montrons comment étendre le framework pour obtenir la traçabilité de feature avec leurs implémentations respectives. De plus, nous fournissons une approche outillée pour vérifier la cohérence de la variabilité implémentée. Notre méthode utilise du slicing pour vérifier partiellement les formules de logique propositionnelles correspondantes aux deux niveaux dans le cas de correspondence 1–m entre ces niveaux. Ceci permet d’obtenir une détection automatique et anticipée des incohérences. Concernant la validation, le framework et la méthode de vérification ont été implémentés en Scala. Ces implémentations ont été appliquées à un vrai système hautement variable et à trois études de cas de lignes de produits. / When large software product lines are engineered, a combined set of traditional techniques, such as inheritance, or design patterns, is likely to be used for implementing variability. In these techniques, the concept of feature, as a reusable unit, does not have a first-class representation at the implementation level. Further, an inappropriate choice of techniques becomes the source of variability inconsistencies between the domain and the implemented variabilities. In this thesis, we study the diversity of the majority of variability implementation techniques and provide a catalog that covers an enriched set of them. Then, we propose a framework to explicitly capture and model, in a fragmented way, the variability implemented by several combined techniques into technical variability models. These models use variation points and variants, with their logical relation and binding time, to abstract the implementation techniques. We show how to extend the framework to trace features with their respective implementation. In addition, we use this framework and provide a tooled approach to check the consistency of the implemented variability. Our method uses slicing to partially check the corresponding propositional formulas at the domain and implementation levels in case of 1–to–m mapping. It offers an early and automatic detection of inconsistencies. As validation, we report on the implementation in Scala of the framework as an internal domain specific language, and of the consistency checking method. These implementations have been applied on a real feature-rich system and on three product line case studies, showing the feasibility of the proposed contributions.
|
70 |
LARGE-SCALE EXOGENOUS FORCING OF LONG-TERM PACIFIC SALMON PRODUCTION AND ECOSYSTEM INTERACTIONS IN WESTERN NORTH AMERICASelbie, DANIEL 27 September 2008 (has links)
Pacific salmon (Oncorhynchus spp.) production strongly influences the ecosystems, cultures and economies of the Northeast Pacific. Historical variability in population sizes is complex, reflecting natural and human drivers. The nature and extent of such ‘exogenous’ controls on salmon and their nursery ecosystems are poorly understood, a significant impediment to sustainable fisheries management. Novel applications of paleolimnology demonstrate that past sockeye salmon abundances and nursery system ecology can be reconstructed from lake sediments. This thesis focuses on employing these techniques to establish the forcing mechanisms underlying salmon population and ecosystem dynamics, and determine the effects and interactions of fisheries management.
I provided the first reconstruction for a southern North American stock, which demonstrated the influences of both conspicuous (e.g. commercial fishery, main-stem damming) and uncertain human impacts (e.g. local damming) on endangered salmon declines. By reconstructing ecological variability at multiple trophic levels, I established that rehabilitative management (e.g. fish stocking) may have permanently altered nursery lake rearing capacity, a change potentially reinforced by recent atmospheric changes. This work highlights significant impediments to ongoing recovery efforts.
I extended my analysis of salmon management by exploring the interactive impacts of exotic salmon stocking on a remote northern lake. I demonstrated the utility of long-term data in pre-emptively understanding the complex impacts of stocking by documenting the long-term trajectories in limnological conditions. Integrating modeling, limnological and paleolimnological analyses, I determined that climate change and salmon introductions compound to alter chemical, physical and biological lake variables, ultimately altering ecosystem structure and functioning.
Finally I reconstructed salmon abundances over the past six millennia, the longest record and the first Canadian example to date, demonstrating salmon production is cyclical and far more variable than observed in the monitoring record. My analyses established that North Pacific salmon production is forced by ocean-atmospheric teleconnections ultimately linked to climatic variability in the tropical Pacific. Further analyses provided the first evidence for a possible solar forcing of Holocene salmon production on both orbital and higher frequency time scales.
Cumulatively this research improves our understanding of the processes underlying variability in Pacific salmon and their natal ecosystems, important to ecologically-informed future management. / Thesis (Ph.D, Biology) -- Queen's University, 2008-09-27 02:41:54.576
|
Page generated in 0.0672 seconds