Spelling suggestions: "subject:"ariedade einstein"" "subject:"ariedade winstein""
1 |
Problema de Yamabe modificado em variedades compactas de dimensão quatro e métricas críticas do funcional curvatura escalar / Yamabe's problem modified in compact four-dimensional and critical metrics of the functional scalar curvatureSantos, Alex Sandro Lopes 19 May 2017 (has links)
SANTOS, A. S. L. Problema de Yamabe modificado em variedades compactas de dimensão quatro e métricas críticas do funcional curvatura escalar. 2017. 58 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-25T19:34:47Z
No. of bitstreams: 1
2017_tese_aslsantos.pdf: 535461 bytes, checksum: 8c3ddbdd33d74c4eb7b265354b3bafb3 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,
Eu revisei a Tese de ALEX SANDRO LOPES SANTOS, e encontrei um pequeno erro na capa, ele colocou os seguintes elementos:
UNIVERSIDADE FEDERAL DO CEARÁ
CENTRO DE CIÊNCIAS
PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA
DOUTORADO EM MATEMÁTICA
Mas deve ser alterado para:
UNIVERSIDADE FEDERAL DO CEARÁ
CENTRO DE CIÊNCIAS
DEPARTAMENTO DE MATEMÁTICA
PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA
Com os demais elementos da Tese, não há nenhum problema de formatação.
Atenciosamente,
on 2017-05-26T15:06:03Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-29T13:47:44Z
No. of bitstreams: 1
2017_tese_aslsantos.pdf: 536279 bytes, checksum: f37ece7d8035a2d9c788c45d2e7807ae (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-05-29T14:08:17Z (GMT) No. of bitstreams: 1
2017_tese_aslsantos.pdf: 536279 bytes, checksum: f37ece7d8035a2d9c788c45d2e7807ae (MD5) / Made available in DSpace on 2017-05-29T14:08:17Z (GMT). No. of bitstreams: 1
2017_tese_aslsantos.pdf: 536279 bytes, checksum: f37ece7d8035a2d9c788c45d2e7807ae (MD5)
Previous issue date: 2017-05-19 / In the fisrt part of this work we investigate the modified Yamabe problem on four-dimensional manifolds whose the modifiers invariants depending on the eigenvalues of the Weyl curvature tensor and they are described in terms of maximum and minimum of the biorthogonal (sectional) curvature. We provide some geometrical and topological properties on four-dimensional manifolds in terms of these invariants. In the second part we investigate the critical points of the total scalar curvature functional restricted to space of metrics with constant scalar curvature of unitary volume, for simplicity CPE metrics. It was conjectured in the 1980’s that every CPE metric must be Einstein. We prove that such a conjecture is true under a second-order vanishing condition on the Weyl tensor. / Na primeira parte deste trabalho investigamos o problema de Yamabe modificado em variedades de dimensão quatro cujos invariantes modificadores dependem dos autovalores do tensor de Weyl e são descritos em termos do máximo e mínimo da curvatura biortogonal (seccional). Fornecemos algumas propriedades geométricas e topológicas para tais variedades em termos destes invariantes. Na segunda parte investigamos os pontos críticos do funcional curvatura escalar total restrito ao espaço de métricas com curvatura escalar constante e volume unitário, abreviadamente chamamos de métricas CPE. Conjecturou-se na década de 1980 que toda métrica CPE deve ser Einstein. Provamos que tal conjectura é verdadeira sob uma condição de nulidade sobre o divergente de segunda ordem do tensor de Weyl.
|
Page generated in 0.1603 seconds