• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspectos da geometria complexa das variedades bandeira

Paredes Gutierrez, Marlio 17 February 2000 (has links)
Orientador: Caio Jose Coletti Negreiros / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-25T20:25:31Z (GMT). No. of bitstreams: 1 ParedesGutierrez_Marlio_D.pdf: 8563392 bytes, checksum: 34ffa07ce1e0867f1fe6e1150b21a58e (MD5) Previous issue date: 2000 / Resumo: Novas familias de métricas invariantes (1,2)-simpléticas sobre F(n), diferentes das de Kãhler e das parabólicas, são estudadas. Mais precisamente, para cada n maior ou igual a 5 são caracterizadas n - 3 familias n-dimensionais distintas de métricas ir-variantes (1,2)-simpléticas. Cada uma destas familias corresponde a uma classe de estructuras quase-complexas invariantes distintas sobre F( n). Os casos das variedades F(5), F(6) e F(7) são estudados completamente. Obtem-se as seguintes familias de métricas (1,2)-simpléticas distintas das de Kãhler e das parabólicas: Em F(5), 2 familias 5-paramétricasj em F(6), 4 familias 6-paramétricas, das quais duas generalizam as mencionadas para F(5) e em F(7), 8 familias 7-paramétricas, das quais 4 generalizam as 4 familias mencionadas para F( 6). Estas métricas são usadas para produzir novos exemplos de aplicações harmônicas f: M2- F(n), aplicandoum conhecidoTeorema de Lichnerowicz. Finalmente, usando resultados de Negreiros estudamos a estabilidade destas aplicações harmônicas / Abstract: New families of (1,2)-symplectic invariant metrics on F(n), different to the Kililer and parabolic, are presented. Exactly, we characterize n - 3 different n-dimensional families of (1,2)-symplectic invariant metrics, for each n - 5. Each of them corresponds to a different c1ass of invariant almost-complex structure on F (n). The F(5), F(6) and F(7) cases are completely studied. We obtain the following families of (1,2)-symplectic invariant metrics, different to the Kãhler and parabolic: On F(5), two 5-parametric families; on F(6), four 6-parametric families, two of them generalizing the two families of F(5) case and, on F(7) we obtain eight 7-parametric families, four of them generalizing the four ones of the F(6) case. These metrics are used to produce new examples of harmonic maps f : M2 - F(n), applying a known Theorem due to Lichnerowicz. Finally, using Negreiros results, the stability of this harmonic maps are studied. / Doutorado / Doutor em Matemática

Page generated in 0.0759 seconds