• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre sistemas de equações do tipo Schrödinger-Poisson. / About systems of equations of the Schrödinger-Poisson type.

LIMA, Romildo Nascimento de. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T15:14:18Z No. of bitstreams: 1 ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) / Made available in DSpace on 2018-08-06T15:14:18Z (GMT). No. of bitstreams: 1 ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) Previous issue date: 2013-02 / Capes / Neste trabalho estaremos interessados em estudar resultados de existência e não existência de solução, comportamento do funcional energia e condição de Palais-Smale para sistemas de equações do tipo Schrödinger-Poisson; usaremos o método variacional. E, as soluções são pontos críticos do funcional energia associado ao problema. Para alcançar nossos objetivos, será fundamental o estudo das variedades de Ruiz e de Nehari, o Princípio Variacional de Ekeland, o teorema do Passo da Montanha, e o lema Concentração de Compacidade. / In this work we are interested in studying the results of existence and nonexistence of solution, behavior of the energy functional and Palais-Smale condition for systems of equations of the type Schrödinger-Poisson; by using variational approach. In fact the solutions are critical points of the energy functional associated with the problem. To achieve our goals, it is essential to study the Manifolds of Ruiz and Nehari, the Ekeland Variational Principle, the Mountain Pass theorem, and the Concentration-Compactness argument.

Page generated in 0.0761 seconds