• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorèmes de point fixe et principe variationnel d'Ekeland

Dazé, Caroline 02 1900 (has links)
Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000. / The Banach contraction principle, which certifies that a contraction of a complete metric space into itself has a fixed point, is for sure the most famous of all fixed point theorems. However, in many case, the contraction we consider is only defined on a subset of a complete metric space. Of course, to certify that such a contraction has a fixed point, we need to add some restrictions. The Caristi theorem, which certifies the existence of a fixed point of a function of a complete metric space into itself satisfying a particular condition on d(x,f(x)), was later generalized to multivalued functions. By introducing different types of inwardness assumptions, we will be able to state some fixed point theorems for multivalued functions defined on a subset of a metric space. This is related to the recent work of French and Polish mathematicians. We were able to generalize some theorems to Fréchet spaces and gauge spaces such as the Caristi theorems and the Ekeland variational principle. We were also able to generalize some fixed point theorems for functions that are only defined on a subset of a Fréchet space or a gauge space. To do so, we used new types of contractions; contractions on Fréchet spaces introduced by Cain and Nashed [CaNa] in 1971 and generalized contractions on gauge spaces introduced by Frigon [Fr] in 2000.
2

Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growth

Freitas, Luciana Roze de 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
3

Théorèmes de point fixe et principe variationnel d'Ekeland

Dazé, Caroline 02 1900 (has links)
Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000. / The Banach contraction principle, which certifies that a contraction of a complete metric space into itself has a fixed point, is for sure the most famous of all fixed point theorems. However, in many case, the contraction we consider is only defined on a subset of a complete metric space. Of course, to certify that such a contraction has a fixed point, we need to add some restrictions. The Caristi theorem, which certifies the existence of a fixed point of a function of a complete metric space into itself satisfying a particular condition on d(x,f(x)), was later generalized to multivalued functions. By introducing different types of inwardness assumptions, we will be able to state some fixed point theorems for multivalued functions defined on a subset of a metric space. This is related to the recent work of French and Polish mathematicians. We were able to generalize some theorems to Fréchet spaces and gauge spaces such as the Caristi theorems and the Ekeland variational principle. We were also able to generalize some fixed point theorems for functions that are only defined on a subset of a Fréchet space or a gauge space. To do so, we used new types of contractions; contractions on Fréchet spaces introduced by Cain and Nashed [CaNa] in 1971 and generalized contractions on gauge spaces introduced by Frigon [Fr] in 2000.
4

Sobre sistemas de equações do tipo Schrödinger-Poisson. / About systems of equations of the Schrödinger-Poisson type.

LIMA, Romildo Nascimento de. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T15:14:18Z No. of bitstreams: 1 ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) / Made available in DSpace on 2018-08-06T15:14:18Z (GMT). No. of bitstreams: 1 ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) Previous issue date: 2013-02 / Capes / Neste trabalho estaremos interessados em estudar resultados de existência e não existência de solução, comportamento do funcional energia e condição de Palais-Smale para sistemas de equações do tipo Schrödinger-Poisson; usaremos o método variacional. E, as soluções são pontos críticos do funcional energia associado ao problema. Para alcançar nossos objetivos, será fundamental o estudo das variedades de Ruiz e de Nehari, o Princípio Variacional de Ekeland, o teorema do Passo da Montanha, e o lema Concentração de Compacidade. / In this work we are interested in studying the results of existence and nonexistence of solution, behavior of the energy functional and Palais-Smale condition for systems of equations of the type Schrödinger-Poisson; by using variational approach. In fact the solutions are critical points of the energy functional associated with the problem. To achieve our goals, it is essential to study the Manifolds of Ruiz and Nehari, the Ekeland Variational Principle, the Mountain Pass theorem, and the Concentration-Compactness argument.
5

Sobre um Sistema do tipo Schrödinger-Poisson

Batista, Alex de Moura 26 April 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:04Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 695566 bytes, checksum: 26f7afc275ad83fa634352b9d522415e (MD5) Previous issue date: 2012-04-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation, we study the existence of two types of non-negative weak solutions for a class of problems of Schrodinger-Poisson type. This kind of problem models, for example, several physical phenomena in quantum mechanics. Initially, by minimization arguments, Splitting Lemma and the Variational Principle of Ekeland we find a weak solution that minimizes the minimum energy level associated to the variety of Nehari N. This is the so-called ground state solution. Afterwards we will find, by using the Linking Theorem, a strictly positive weak solution which is not a ground state solution: the so-called bound state solution. / Nesta dissertação, estudaremos a existência de dois tipos de soluções fracas não negativas para uma classe de problemas do tipo Schrödinger-Poisson, os quais modelam fenômenos físicos, por exemplo, em Mecânica Quântica. Inicialmente, encontraremos através de argumentos de minimização, do Lema Splitting e do Princípio Variacional de Ekeland, uma solução fraca que minimiza o nível de energia mínima associado a variedade de Nehari N. Tal solução é denominada do tipo ground state. Em seguida, encontraremos através do Teorema de Linking, uma solução fraca estritamente positiva que não é do tipo ground state. Tal solução é denominada do tipo bound state.
6

Sobre uma classe de equações elípticas envolvendo crescimento exponencial em ℝ2

Guimarães, Wanderson Rodrigo 16 May 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1317724 bytes, checksum: 6a915301a18806d377bf5c949922b304 (MD5) Previous issue date: 2013-05-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we will study the existence and multiplicity of weak solutions for a class of nonhomogeneous elliptic problems involving exponential growth Trudinger-Moser type in R2. For this, we will use the Ekeland s Variational Principle and the Mountain Pass Theorem without the Palais-Smale condition in combination with a version of the Trudinger-Moser inequality. / Teorema do Passo da Montanha, Principio variacional de Ekeland, equação de Schrodinger, Desigualdade de Trudinger-Moser, Crescimento Exponencial.
7

Métodos variacionais aplicados à problemas singulares em equações elípticas não lineares / Variational methods applied to singular problems in elliptic nonlinear equations

Brito, Lucas Menezes de 10 August 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-06T10:34:36Z No. of bitstreams: 2 Dissertação - Lucas Menezes de Brito - 2018.pdf: 2914034 bytes, checksum: 600a20e123b6c9b15b12092b1a8071c8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-06T10:35:12Z (GMT) No. of bitstreams: 2 Dissertação - Lucas Menezes de Brito - 2018.pdf: 2914034 bytes, checksum: 600a20e123b6c9b15b12092b1a8071c8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-06T10:35:12Z (GMT). No. of bitstreams: 2 Dissertação - Lucas Menezes de Brito - 2018.pdf: 2914034 bytes, checksum: 600a20e123b6c9b15b12092b1a8071c8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-08-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study a singular partial differential problem in a bounded domain with smoth boundary. We have two main cases, one superlinear with weak singularity, and the other one sublinear with strong songularity. We use Variational Methods, such as the Ekeland Variational Principle and the Nehari Manifolds, to solve this problem, finding weak solutions and proving the multiplicity of solutions in one of the cases. / Neste trabalho estudaremos um problema diferencial parcial singular em um domínio limitado com bordo suave. Temos dois casos principais, um superlinear com singularidade fraca e um sublinear com singularidade forte. Usaremos Métodos Variacionais, como o Princípio Variacional de Ekeland e as Variedades de Nehari, para resolver este problema, encontrando soluções fracas e provando a multiplicidade das mesmas em um dos casos.
8

Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growth

Luciana Roze de Freitas 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory

Page generated in 0.1252 seconds