• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inmersiones isométricas de variedades completas con curvatura negativa en espacios euclidianos

Huaylla Salomé, Miguel Angel 24 November 2022 (has links)
Las superficies pseudo-esféricas tienen localmente la misma geometría que H2, además podemos obtener una realización (inmersión isométrica) de un horodisco de H2 en la pseudo-esfera. ¿Se podrá realizar todo H2 en R3 como una superficie sin singularidades? ¿Existe alguna variedad completa con curvatura constante negativa que se pueda realizar en R3? Una respuesta negativa lo da el teorema de Hilbert. ¿Es realmente esencial que la curvatura sea constante como hipótesis en este teorema? ¿Es posible dilatar las hipótesis de este teorema de modo que la conclusión siga siendo válida? Encontraremos las respuestas a estas preguntas en el teorema de Efimov. ¿Existirá algún entero p tal que H2 pueda realizarse en Rp? ¿La respuesta a la pregunta anterior se puede generalizar para Hn? Como último objetivo de este trabajo, es estudiar a detalle el teorema de Blanusa quien logra responder a estas preguntas, de manera afirmativa. Posteriormente Rozendorn, Henke-Nettekoven y Azov, reducieron la codimensión de estas realizaciones, haciendo uso del método planteado por Blanusa el cual será expuesto a detalle. / The pseudo-spherical surfaces locally have the same geometry as H2, furthermore we can obtain a realization (isometric immersion) of a horodisk of H2 in the pseudo-sphere. Will all H2 in R3 be realized as a surface without singularities? Is there a complete manifold with constant negative curvature that can be realized on R3? A negative answer is given by the Hilbert's theorem. Is it really essential that the curvature be constant as an assumption in this theorem? Is it possible to weaken the hypotheses of this theorem so that the conclusion holds? We will find the answers to these questions in Efimov's theorem. Will there exist some integer p such that H2 can be realized in Rp? Can the answer to the previous question be generalized to Hn? As the last objective of this work, it is to study in detail the Blanusa theorem who manages to answer these questions, in an afirmative way. Subsequently, Rozendorn, Henke-Nettekoven and Azov reduced the codimension of these realizations, using the method proposed by Blanusa, which will be explained in detail.
12

Cohomología de grupos, su cálculo y ejemplos básicos

Sánchez Ruiz, David 29 January 2021 (has links)
La tesis tiene como objetivo mostrar conceptos, propiedades de la cohomología de grupos como el estudio abstracto de resoluciones, cociclos y cofronteras. También, calculamos los grupos de cohomología de un grupo finito y mostramos algunas aplicaciones en la teoría de grupos y en la teoría de números. / Tesis
13

Integración en variedades

Agapito Ruiz, Rubén Ángel 26 August 2020 (has links)
Dado que el tema de tesis es "Integración en Variedades", iniciamos esta disertación con el estudio del espacio en donde nos moveremos. Para ello, con el fin de ser autocontenido y de establecer notaciones, recordamos en el Capítulo 1 algunas herramientas básicas del Cálculo Diferencial. Adicionalmente, justificamos la existencia de funciones chichón (bump functions, en inglés) sobre Ir. La utilidad de este tipo de funciones aparece en el estudio de particiones de la unidad del Capítulo 2. En este capítulo, introducimos las variedades diferenciables —junto con los conceptos de subvariedad, espacio tangente, haz tangente y campos vectoriales—, espacios topológicos que son el resultado de la abstracción del concepto de superficie en R3. La idea básica de una variedad es la introducción de objetos locales que soporten el proceso de diferenciación, para luego pegarlos compatiblemente. Ello se hace patente en cada concepto nuevo que elaboramos en este capítulo, el cual nos enseña —entre muchas cosas— a cultivar la sana costumbre de preguntarnos si está bien definido cada concepto nuevo que presentamos, es decir, si es independiente del representante local. En el Capítulo 3, desarrollamos el estudio de las formas diferenciales, elementos esenciales para el proceso de integración. Es común en este capítulo discutir primero un concepto nuevo sobre un espacio vectorial, para luego llevarlo a una variedad (vía su espacio tangente en cada punto). Es así como del estudio de las formas exteriores llegamos a las formas diferenciales; lo cual también realizamos sobre los conceptos de orientación y el elemento de volumen. Este último concepto nos lleva al estudio de las métricas Riemannianas, cuya idea intuitiva es la de proveer de un espacio vectorial con producto interno a cada punto de una variedad. Finalizamos el capítulo con la introducción de variedades con frontera, concepto necesario para establecer el Teorema de Stokes. En el Capítulo 4, analizamos la integración de formas diferenciales con soporte compacto sobre una variedad orientable, y la integración de funciones continuas, en donde se requiere adicionalmente que nuestra variedad dada sea Riemanniana. Luego de ello estudiamos el Teorema de Stokes, del cual presentamos dos versiones, una para variedades con frontera suave, por ejemplo, una superficie con frontera difeomorfa a un círculo, y la otra para variedades cuya frontera presente esquinas, por ejemplo, un cuadrado en R2 o un subconjunto abierto de R3 acotado por un poliedro. El último capítulo representa la justificación del título de la tesis, sin embargo, ello nos ha servido de excusa para adentramos a la Geometría Diferencial Moderna, ya que los capítulos anteriores representan un buen punto de partida para estudios más avanzados —en cualquier dirección— de Matemáticas y de Física Teórica.

Page generated in 0.0724 seconds