• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformaciones de estructuras complejas

Villareal Montenegro, Yuliana 04 October 2013 (has links)
Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes. / Tesis
2

Espacios fibrados, clases características y el isomorfismo de Thom

Arroyo Flores, Merwil Luciano 10 October 2013 (has links)
La Topología Algebraica es una rama de las matemáticas, donde la idea fundamental es asociar objetos algebraicos a los espacios topológicos y/o variedades, de manera que la estructura asociada sea un invariante, en ese sentido estudiando las propiedades algebraicas del objeto asociado podemos extraer consecuencias sobre la geometría y la topología del espacio. La cohomología de Rham y la cohomología con soporte compacto, son los dos principales invariantes topológicos de una variedad C∞, en ambos casos son herramientas algebraicas, que se trata de cierta estructura algebraica extraída de una variedad diferenciable, permitirá distinguir si dos variedades son o no homeomorfas. El cálculo de los grupos de cohomología de una variedad no es tan fácil, con esa idea se introdujo una buena técnica como es la secuencia de Mayer Vietoris para ambos invariantes introducida por Leopoldo Vietoris(1850), esta técnica calcula grupos de cohomología de una variedad que es posible expresarla como la unión de dos conjuntos abiertos no necesariamente disjuntos, entonces así se puede determinar los grupos de cohomología de la variedad en términos de los grupos de cohomología de estos abiertos. Así mismo y con esa misma necesidad se obtuvo la Dualidad de Poincaré para una variedad orientable de dimensión, que establece el isomorfismo entre el grupo de cohomología de Rham y el dual de la cohomología con soporte compacto, éste isomorfismo es mucho más importante cuando la variedad orientable no es compacta. Con el propósito de seguir buscando más objetos algebraicos que permitan proporcionar más información geométrica y/o topológica del espacio se empieza estudiar la variedad producto, cuya generalización conduce a la variedad producto local en ese sentido se obtiene una nueva variedad a partir de otra(espacio base) llamado(Espacio Fibrado) donde su espacio total está formado por fibras(sub-variedades) en particular y en el que más trabajaremos es cuando las fibras sean espacios vectoriales a estos fibrados los llamaremos Fibrados Vectoriales ya teniendo un fibrado y la noción de paralelismo en el espacio ambiente R n se generaliza a espacios fibrados y se obtiene un operador algebraico llamada conexión, asociada a éste tenemos definida la curvatura. Este trabajo está dividido en cinco capítulos; el primer capítulo se hace una exposición ligera de la cohomología de Rham así como una exposición de la secuencia de Mayer Vietoris y lo más importante la Dualidad de Poincaré que son los pilares fundamentales en el éxito de este trabajo. En el segundo y tercer capítulo se hace un estudio de los espacios fibrados pero concentrándonos más en los fibrados vectoriales las operaciones entre ellos y la conexión y curvatura ´este ´último es la base fundamental para las clases características. En el capítulo cuatro empezamos a hablar de los polinomios invariantes que son una herramienta clásica que permite hacer un estudio detallado de las clases características principalmente en las Clases de Chern para fibrados vectoriales complejos la misma que se construye en base a la 2-forma de curvatura. Finalmente en el capítulo cinco se empieza trabajando una herramienta que permite calcular los grupos de cohomología de un espacio producto llamada la Fórmula de Künneth, posteriormente se construye un nuevo fibrado llamado el fibrado de esferas que se usará en poder probar el isomorfismo de Thom, además se define el índice de una sección y se concluye con el teorema generalizado de Gauss-Bonnet. El trabajo ha sido hecho en base a mucho esfuerzo, dedicación, y doy gracias a Dios por haberme guiado siempre y así poder lograr todas las metas trazadas . Agradezco anticipadamente a los lectores por las observaciones que tengan a bien formular. / Tesis
3

Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)

Lope Vicente, Joe Moises 04 October 2018 (has links)
The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric. / Tesis
4

Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)

Lope Vicente, Joe Moises 04 October 2018 (has links)
The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric. / Tesis
5

Deformaciones de estructuras complejas

Villareal Montenegro, Yuliana 04 October 2013 (has links)
Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes. / Tesis
6

Espacios fibrados, clases características y el isomorfismo de Thom

Arroyo Flores, Merwil Luciano 10 October 2013 (has links)
La Topología Algebraica es una rama de las matemáticas, donde la idea fundamental es asociar objetos algebraicos a los espacios topológicos y/o variedades, de manera que la estructura asociada sea un invariante, en ese sentido estudiando las propiedades algebraicas del objeto asociado podemos extraer consecuencias sobre la geometría y la topología del espacio. La cohomología de Rham y la cohomología con soporte compacto, son los dos principales invariantes topológicos de una variedad C∞, en ambos casos son herramientas algebraicas, que se trata de cierta estructura algebraica extraída de una variedad diferenciable, permitirá distinguir si dos variedades son o no homeomorfas. El cálculo de los grupos de cohomología de una variedad no es tan fácil, con esa idea se introdujo una buena técnica como es la secuencia de Mayer Vietoris para ambos invariantes introducida por Leopoldo Vietoris(1850), esta técnica calcula grupos de cohomología de una variedad que es posible expresarla como la unión de dos conjuntos abiertos no necesariamente disjuntos, entonces así se puede determinar los grupos de cohomología de la variedad en términos de los grupos de cohomología de estos abiertos. Así mismo y con esa misma necesidad se obtuvo la Dualidad de Poincaré para una variedad orientable de dimensión, que establece el isomorfismo entre el grupo de cohomología de Rham y el dual de la cohomología con soporte compacto, éste isomorfismo es mucho más importante cuando la variedad orientable no es compacta. Con el propósito de seguir buscando más objetos algebraicos que permitan proporcionar más información geométrica y/o topológica del espacio se empieza estudiar la variedad producto, cuya generalización conduce a la variedad producto local en ese sentido se obtiene una nueva variedad a partir de otra(espacio base) llamado(Espacio Fibrado) donde su espacio total está formado por fibras(sub-variedades) en particular y en el que más trabajaremos es cuando las fibras sean espacios vectoriales a estos fibrados los llamaremos Fibrados Vectoriales ya teniendo un fibrado y la noción de paralelismo en el espacio ambiente R n se generaliza a espacios fibrados y se obtiene un operador algebraico llamada conexión, asociada a éste tenemos definida la curvatura. Este trabajo está dividido en cinco capítulos; el primer capítulo se hace una exposición ligera de la cohomología de Rham así como una exposición de la secuencia de Mayer Vietoris y lo más importante la Dualidad de Poincaré que son los pilares fundamentales en el éxito de este trabajo. En el segundo y tercer capítulo se hace un estudio de los espacios fibrados pero concentrándonos más en los fibrados vectoriales las operaciones entre ellos y la conexión y curvatura ´este ´último es la base fundamental para las clases características. En el capítulo cuatro empezamos a hablar de los polinomios invariantes que son una herramienta clásica que permite hacer un estudio detallado de las clases características principalmente en las Clases de Chern para fibrados vectoriales complejos la misma que se construye en base a la 2-forma de curvatura. Finalmente en el capítulo cinco se empieza trabajando una herramienta que permite calcular los grupos de cohomología de un espacio producto llamada la Fórmula de Künneth, posteriormente se construye un nuevo fibrado llamado el fibrado de esferas que se usará en poder probar el isomorfismo de Thom, además se define el índice de una sección y se concluye con el teorema generalizado de Gauss-Bonnet. El trabajo ha sido hecho en base a mucho esfuerzo, dedicación, y doy gracias a Dios por haberme guiado siempre y así poder lograr todas las metas trazadas . Agradezco anticipadamente a los lectores por las observaciones que tengan a bien formular. / Tesis
7

Estructuras métricas de contacto y polinomios de Brieskorn-Pham

Ballón Bordo, Álvaro José 15 November 2016 (has links)
Esta tesis presenta una visión global y prácticamente autocontenida de los avances que se llevaron a cabo en la décadas de los años 1960 y 1970 con respecto al estudio de las estructuras de contacto en variedades diferenciables. Nuestro objetivo principal sería exhibir explícitamente estructuras métricas de contacto en las denominadas variedades de Brieskorn, que surgen como el conjunto de ceros de los llamados polinomios de Brieskorn-Pham intersecado con la esfera unitaria. Para ello comenzaremos desarrollando a grandes rasgos los conceptos relacionados a la geometría simpléctica, la geometría compleja y las variedades de Kähler. Luego realizaremos un esbozo de prueba del teorema de Boothby-Wang, que constituye una generalización de la fibración de Hopf. A continuación presentaremos la construcción de estructuras métricas de contacto, en particular, las denominadas estructuras de Sasaki. El objetivo de ello es obtener estructuras de Sasaki en las variedades de Brieskorn, las cuales exhibiremos en coordenadas a fin de obtener un procedimiento para construirlas en una variedad de Brieskorn arbitraria. Por último, relacionaremos lo estudiado con la fibración de Boothby-Wang para probar que las estructuras construidas pueden ser proyectadas como hipersuperficies en el espacio proyectivo complejo. Debido a la naturaleza de las nociones presentadas, se espera que el lector tenga un conocimiento elemental de la geometría riemanniana. / Tesis
8

El teorema de Darboux para formas simplécticas

López Vereau, Charles Edgar January 2018 (has links)
Estudia un importante resultado de la geometría simpléctica como es el Teorema de Darboux para formas simplécticas, el cual muestra la rigidez de estas estructuras en vecindades de subvariedades. Con este objetivo, primero se hace una revisión del cálculo en variedades: campos de vectores y tensores más generales, como formas diferenciales, derivada de Lie y multiplicación interior, también se realiza un estudio detallado de la geometría simpléctica: espacios simplécticos, variedades simplécticas y estudiaremos rápidamente geometría de contacto, para luego estudiar el Teorema de Daboux mediante el truco de Moser. / Tesis
9

Estructuras métricas de contacto y polinomios de Brieskorn-Pham

Ballón Bordo, Álvaro José 15 November 2016 (has links)
Esta tesis presenta una visión global y prácticamente autocontenida de los avances que se llevaron a cabo en la décadas de los años 1960 y 1970 con respecto al estudio de las estructuras de contacto en variedades diferenciables. Nuestro objetivo principal sería exhibir explícitamente estructuras métricas de contacto en las denominadas variedades de Brieskorn, que surgen como el conjunto de ceros de los llamados polinomios de Brieskorn-Pham intersecado con la esfera unitaria. Para ello comenzaremos desarrollando a grandes rasgos los conceptos relacionados a la geometría simpléctica, la geometría compleja y las variedades de Kähler. Luego realizaremos un esbozo de prueba del teorema de Boothby-Wang, que constituye una generalización de la fibración de Hopf. A continuación presentaremos la construcción de estructuras métricas de contacto, en particular, las denominadas estructuras de Sasaki. El objetivo de ello es obtener estructuras de Sasaki en las variedades de Brieskorn, las cuales exhibiremos en coordenadas a fin de obtener un procedimiento para construirlas en una variedad de Brieskorn arbitraria. Por último, relacionaremos lo estudiado con la fibración de Boothby-Wang para probar que las estructuras construidas pueden ser proyectadas como hipersuperficies en el espacio proyectivo complejo. Debido a la naturaleza de las nociones presentadas, se espera que el lector tenga un conocimiento elemental de la geometría riemanniana. / Tesis
10

Una generalización del teorema de Briot-Bouquet para campos de vectores en (Cn, 0)

Salazar Ching, Carlos Antonio 06 December 2022 (has links)
Se estudian las variedades que son invariantes por algún campo vectorial analítico en el espacio de gérmenes (Cn, 0), n ≥ 2. Específicamente, si la parte lineal de un campo vectorial en (Cn, 0) no es nilpotente y tiene dos paquetes de autovalores R y S, respectivamente, se establece entonces una condición de no-resonancia para garantizar la existencia de variedades que incluyen el punto singular del campo, pero son formalmente lisas. En este contexto, se busca establecer condiciones su cientes que garanticen la convergencia de éstas variedades, esto constituye una generalización del conocido teorema de Briot-Bouquet y es el propósito principal de este trabajo. Cabe señalar que este trabajo está basado en el artículo [CS+14], publicado por F. Sanz y S. A. Carrillo. / Manifolds that are invariant by some analytic vector field in the germ space (Cn, 0), n ≥ 2 are studied. Specifically, if the linear part of a vector field in (Cn, 0) is not nilpotent and two eigenvalue packages have R and S respectively, a non-resonance condition is established for guarantee the existence of varieties that include the singular point of the field, but they are formally smooth. In this context, it seeks to establish conditions sufficient to guarantee the convergence of these varieties, this constitutes a generalization of the well-known Briot-Bouquet theorem and is the purpose main of this work. It should be noted that this work is based on the article [CS+14], published by F. Sanz and S. A. Carrillo.

Page generated in 0.074 seconds