• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformaciones de estructuras complejas

Villareal Montenegro, Yuliana 04 October 2013 (has links)
Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes. / Tesis
2

Seudo-Métricas Inducidas por Funciones de Tipo Legendre y Métodos dinámicos en Optimización

Hermosilla Jiménez, Cristopher Adrián January 2011 (has links)
El objetivo de la presente memoria es proponer un nuevo método para resolver una clase general de problemas de optimización, a saber, dado un conjunto convexo y abierto , una función diferenciable , una matriz de rango completo (con ) y un vector , buscamos resolver algorítmicamente el problema: (P0) min{ f(x) : x ∈ clC, Ax = b}. Para esto, tomamos herramientas de la Geometría Riemanniana, las mezclamos con el método de máximo descenso y nos preguntamos qué sucede si miramos este algoritmo bajo la lupa de otra métrica, una no necesariamente Euclideana. Si bien la idea de usar métricas variables para resolver este tipo de problemas no es nueva, nuestro trabajo sí lo es, pues nos interesamos en una en particular, una que es inducida por el cuadrado de la matriz Hessiana de una cierta función barrera cuyo dominio coincide con . Esta métrica tiene la gran gracia de proveernos de una isometría, fácil de calcular, entre el conjunto , visto como variedad, y un espacio Euclideano apropiado. En el capítulo 1 de esta memoria damos una descripción introductoria de las herramientas de la Geometría Riemanniana que usamos para desarrollar nuestra teoría. En el capítulo 2 definimos formalmente la Métrica Hessiana Cuadrada de Legendre sobre un dominio convexo. Estudiamos también sus principales propiedades y consecuencias. En el capítulo 3 introducimos un nuevo método de optimización para resolver de forma algorítmica un problema más simple que el de minimizar la función sólo sobre la adherencia del conjunto . También introducimos una nueva noción de dualidad y presentamos algunos teoremas de convergencia. En el capítulo 4 generalizamos este método, con el fin de resolver algorítmicamente el problema . Por otra parte, en el capítulo 5 abordamos la pregunta de en qué casos nuestra métrica coincide con la inducida por la Hessiana de otra función barrera. Primeramente, planteamos el problema para el caso separable, obteniendo condiciones necesarias y suficientes, para luego pasar a un caso más general, donde sólo obtuvimos una condición necesaria. Finalmente, usando este criterio mostramos que el problema es en realidad muy restrictivo respecto al conjunto , lo cual nos hace conjeturar que esta pregunta no es fácil de responder y que la respuesta es en general negativa. Cabe destacar que la noción de dualidad que aquí introducimos crea un lazo entre las propiedades de carácter Riemanniano y las de carácter Euclideano, en particular, permite transformar problemas no convexos en otros que sí lo son. Más aún, esta noción nos muestra que es posible resolver ciertos problemas de optimización con restricciones aplicando métodos de optimización irrestricta sobre un problema dual adecuado.
3

Formas armónicas con valores en un fibrado vectorial e inmersiones de variedades riemannianas

Llauce Santamaría, Edwin Edilberto 06 July 2015 (has links)
El propósito de este trabajo es discutir la aplicación de la teoría de las formas armónicas con valores en un fibrado vectorial y su relación con las inmersiones en una variedad riemanniana. Sea M una variedad riemanniana y E un fibrado vectorial riemanniano sobre M, entonces podemos definir de manera natural el operador laplaciano en las formas diferenciales con valores en E y expresaremos el producto escalar ⟨θ, θ⟩, donde θ es una p-forma con valores en E, en términos de la curvatura y la diferencial covariante. Además si M es compacta, obtendremos, mediante integración sobre M una formula análoga a las formas diferenciales ordinarias de Bochner’s. Sea f una inmersión de M en una variedad riemanniana M. Consideramos la segunda forma fundamental α de (M, f) como una 1-forma con valores en Hom (T (M), N(M)). Asumiendo que M′ es de curvatura seccional constante y la curvatura media normal de (M, f ) es paralela, probaremos que la segunda forma fundamental α es armónica, es decir α = 0. En particular, si la inmersión f es una inmersión minimal, entonces α es armónica. Por el contrario, si M es compacta y α es armónica, entonces la curvatura media normal es paralela. / Tesis
4

Deformaciones de estructuras complejas

Villareal Montenegro, Yuliana 04 October 2013 (has links)
Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes. / Tesis
5

Formas armónicas con valores en un fibrado vectorial e inmersiones de variedades riemannianas

Llauce Santamaría, Edwin Edilberto 06 July 2015 (has links)
El propósito de este trabajo es discutir la aplicación de la teoría de las formas armónicas con valores en un fibrado vectorial y su relación con las inmersiones en una variedad riemanniana. Sea M una variedad riemanniana y E un fibrado vectorial riemanniano sobre M, entonces podemos definir de manera natural el operador laplaciano en las formas diferenciales con valores en E y expresaremos el producto escalar ⟨θ, θ⟩, donde θ es una p-forma con valores en E, en términos de la curvatura y la diferencial covariante. Además si M es compacta, obtendremos, mediante integración sobre M una formula análoga a las formas diferenciales ordinarias de Bochner’s. Sea f una inmersión de M en una variedad riemanniana M. Consideramos la segunda forma fundamental α de (M, f) como una 1-forma con valores en Hom (T (M), N(M)). Asumiendo que M′ es de curvatura seccional constante y la curvatura media normal de (M, f ) es paralela, probaremos que la segunda forma fundamental α es armónica, es decir α = 0. En particular, si la inmersión f es una inmersión minimal, entonces α es armónica. Por el contrario, si M es compacta y α es armónica, entonces la curvatura media normal es paralela. / Tesis

Page generated in 0.1009 seconds