• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 15
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 77
  • 77
  • 77
  • 77
  • 23
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An Examination of the Mechanisms Underlying Acute and Chronic Hypoxic Regulation of L-Type Ca2+ Channel a 1CSubmits

Hudasek, Kristin 07 1900 (has links)
L-type Ca2+ channels, found in vascular smooth muscle cells, function to control Ca2+ influx, which directly regulates the degree of tension in the vasculature. An influx of Ca2+ causes these cells to contract while inhibition of this channel causes muscle relaxation, a major goal in treating hypertension. Acute hypoxia inhibits, and chronic hypoxia enhances, Ca2+ channel currents. The mechanisms underlying these hypoxic responses were examined in HEK 293 cells by altering cellular levels of proposed mediators of 0 2 sensing which have previously been shown to be involved in the redox model of 02 sensing in various cell types. In these studies I investigated the roles of mitochondrial complexes and NADPH oxidase function, and changes in cellular ROS levels, on the acute and chronically hypoxic regulation of recombinant L-type Ca2+ channels. An increase in H202, a form of ROS, by exogenous application was found to enhance Ca2+ currents. However neither catalase nor H202 affected the acute hypoxic response. In contrast superoxide dismutase (SOD) abolished hypoxic inhibition of recombinant L-type Ca2+ channels, suggestive of a role of 02- production in 02 sensing. Altered production of this ROS during hypoxia may occur within the mitochondria since acute 02 sensing was abolished in mitochondria-depleted p0 cells. Alterations in NADPH oxidase activity via application of NADPH oxidase inhibitors such as DPl and P AO did not mediate the acute hypoxic response. Hypoxic regulation of mitochondrial complex I may also mediate the response to chronic hypoxia since current enhancement by this stimulus was abolished by rotenone. These findings support the involvement of altered mitochondrial function in the 0 2 sensing pathway which mediates the hypoxic responses of recombinant L-type Ca2+ channel a1c subunits. / Thesis / Master of Science (MSc)
12

Examining the role of hypertension-induced mechanotransduction on vascular smooth muscle cells and vascular calcification

Moon, Jessica 13 August 2024 (has links) (PDF)
Cardiovascular disease is the world’s number 1 killer. The cardiovascular system helps to pump blood throughout the human body and maintain a systemic balance. However, medial vascular calcification results when this system becomes off balance, such as in cases of high blood pressure leading to hypertension. Many factors are involved in this process, but the most important is the vascular smooth muscle cell phenotypic switch to osteoblast-like cells. When vascular smooth muscle cells are subject to mechanical stimuli, mechanotransduction occurs, causing an intracellular signaling cascade leading to a phenotypic switch associated with the Wnt signaling pathway and osteogenic markers. There is a lack of understanding of the defined linkages of pathways that lead to the development of the osteoblast-like cell type. Therefore, examining human aortic smooth muscle cells under hypertensive conditions could decrease the prevalence of cardiovascular disease worldwide.
13

A Functional Role for Doscoidin Domain Receptor 1 (Ddr1) in the Regulation of Inflmmation and Fibrosis During Atherosclerotic Plaque Development

Franco, Christopher 24 September 2009 (has links)
Collagens are abundant components of the extracellular matrix in the atherosclerotic plaque. In addition to contributing to lesion volume and mechanical stability, collagens can influence the behavior of macrophages and smooth muscle cells (SMCs) and have profound effects on both inflammation and fibrosis during lesion development. The aim of this thesis was to define a functional role for the discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine kinase, in murine models of atherogenesis. In our first study, using Ddr1+/+;Ldlr-/- and Ddr1-/-;Ldlr-/- mice fed a high fat diet, we identified DDR1 as a novel positive regulator of atherogenesis. Targeted deletion of DDR1 attenuated atherosclerotic plaque development by limiting inflammation and accelerating matrix accumulation and resulted in the formation of macrophage poor, matrix rich lesions. In the second study, we used bone marrow transplantation to generate chimeric mice with a deficiency of DDR1 in bone marrow derived cells and reveal a central role for macrophage DDR1 in atherogenesis. Deficiency of DDR1 in bone marrow derived cells reduced lesion size by limiting macrophage accumulation in the developing plaque. Moreover using BrdU pulse labeling, we demonstrated reduced monocyte recruitment into the early fatty streak lesions of Ddr1-/-;Ldlr-/- mice. In our third study, we again utilized bone marrow transplantation to generate mice with deficiency of DDR1 in the host derived tissues such as the vessel wall and uncovered a distinct role for DDR1 expressed on resident vessel wall smooth muscle cells in the regulation of matrix accumulation and fibrous cap formation during atherogenesis. Deficiency of DDR1 in vessel wall cells resulted in robust accumulation of collagen and elastin and resulted in the formation of larger atherosclerotic plaques, with thick fibrous caps. Taken together, these studies support a critical role for DDR1 in the development of the atherosclerotic plaque. We demonstrate that DDR1 exerts distinct and opposing effects on lesion size by regulating both monocyte recruitment and matrix accumulation. These studies underscore the importance of collagen signaling during atherogenesis, and identify DDR1 as a key transducer; providing signals that regulate both inflammation and fibrosis during atherogenesis.
14

Rôle du facteur d’échange nucléotidique Arhgef1 dans l’hémostase / Role of the Arhgef1 nucleotide exchange factor in hemostasis

Rouillon, Camille 18 September 2019 (has links)
Une des propriétés majeures de la thrombine est le caractère pléiotropique de ses effets physiologiques et pathologiques à la fois dans le compartiment sanguin et tissulaire de la paroi. La voie de signalisation RhoA est activée par la fixation de la thrombine aux récepteurs PARs et cette voie est un régulateur principal de la mécanotransduction et de la plasticité cellulaire. Le facteur d’échange de RhoA, Arhgef1, est impliqué dans le développement de l’hypertension dépendante de l’angiotensine II et dans l’athérothrombose. Notre hypothèse est que le contrôle de la signalisation intracellulaire de RhoA par Arhgef1 est un élément régulateur de la coagulation plasmatique et pourrait participer aux modifications phénotypiques des plaquettes et des cellules vasculaires et ainsi contribuer à l’augmentation de la génération de thrombine tissulaire. Les objectifs ont été de caractériser la génération de thrombine et la fonction plaquettaire depuis leur activation jusqu’à leurs implications dans un modèle de thrombose tissulaire et d’étudier le rôle prothrombotique des cellules musculaires lisses vasculaires (CMLVs) chez des souris Arhgef1 -/-. Résultats : Les souris Arhgef1-/- ont une numération plaquettaire normale mais présentent une diminution significative de l’activation plaquettaire, de la génération de thrombine en sang total et en présence de plaquettes (mais pas en plasma pauvre en plaquettes) et de l’adhérence plaquettaire par rapport aux souris contrôles. Ces modifications se traduisent, in vivo, par un plus grand nombre d’arrêts transitoires de l’écoulement sanguin dans le modèle de saignement à la queue et un allongement du temps de survenue du thrombus occlusif carotidien en réponse au FeCl3 chez les souris Arhgef1 -/- comparées aux contrôles. Les CMLVs des souris Arhgef1 -/- génèrent moins de thrombine à leur surface et ont une prolifération diminuée par rapport aux CMLVs des souris contrôles. En conclusion, les résultats démontrent le rôle d’Arhgef1 dans les fonctions plaquettaires et dans la régulation du phénotype des CMLVs. Le mécanisme principal fait intervenir la Rho GTPase dans l’adhésion plaquettaire et la génération de thrombine à la surface CMLVs qui contrôlent la formation du thrombus. Ces résultats suggèrent que ce facteur d’échange est capable d’amplifier la thrombose artérielle et pourrait être impliqué via les récepteurs à la thrombine dans le couplage thrombine tissulaire-rigidité cellulaire via les plaquettes et les CMLVs dans les pathologies vasculaires. / One of the major properties of thrombin is the pleiotropic character of its physiological and pathological effects in both the blood and the tissue compartment of the vessel wall. The RhoA signaling pathway is activated by the binding of thrombin to the PARs receptors and this pathway is a major regulator of mechanotransduction and cellular plasticity. The RhoA exchange factor, Arhgef1, is involved in the development of angiotensin II-dependent hypertension and in atherothrombosis. Our hypothesis is that the control of intracellular RhoA signaling by Arhgef1 is a regulatory element of plasma coagulation and could participate in phenotypic modifications of platelets and vascular cells and thus contribute to the increase of tissue thrombin generation. The objectives were to characterize thrombin generation and platelet function from their activation to their implications in a model of tissue thrombosis, and to study the prothrombotic role of vascular smooth muscle cells (VSMCs) in Arhgef1 -/- mice. Results: Arhgef1 -/- mice had a normal platelet count but showed a significant decrease in platelet activation, thrombin generation in whole blood and in the presence of platelets (but not in platelet poor plasma) and platelet adhesion compared to control mice. These modifications result, in vivo, by a greater number of transitory stopping of the blood flow in the tail bleeding model and an increase in the time of occurrence of the carotid occlusive thrombus in response to FeCl3 in Arhgef1 -/- mice compared to controls. The VSMCs of Arhgef1 -/- mice generate less thrombin at their surface and have decreased proliferation compared to VSMCs of the control mice. In conclusion, the results demonstrate the role of Arhgef1 in platelet function and in the regulating of the phenotype of VSMCs. The main mechanism involves Rho GTPase in platelet adhesion and in thrombin generation at the VSMC surface that control thrombus formation. These results suggest that this exchange factor is able to amplify aterial thrombosis and could be involved via thrombin receptors in tissue thrombin-cell stiffness coupling via platelets and VSMCs in vascular pathologies.
15

Molecular regulation of Nox1 NADPH oxidase in vascular smooth muscle cell activation

Streeter, Jennifer Lee 01 May 2015 (has links)
Nox1 is of considerable importance because of its involvement in a wide variety of pathologies. Activation of Nox1 induces generation of reactive oxygen species (ROS) and cell migration, events critical for the pathogenesis of cardiovascular disease, amyotropic lateral sclerosis, gastrointestinal disease, immunological disorders, and multiple forms of cancer [1-8]. In order to best determine how to treat Nox1-mediated disease, we must gain a better understanding of the mechanisms that control Nox1 activation. Within the last decade, many studies have found that protein phosphorylation and protein trafficking are critical regulatory mechanisms that control the activation of multiple Nox proteins. Yet, to date, no studies have characterized Nox1 phosphorylation or trafficking. We hypothesized that the activity of Nox1 is controlled by its phosphorylation at specific residues and by its sub-cellular localization; and that modifying Nox1 phosphorylation or localization will alter Nox1-dependent signaling. To test this hypothesis, we utilized both in vivo and in vitro approaches. We found that phosphorylation of Nox1 is significantly increased under pathological conditions in three in vivo models: (1) in atherosclerotic vs. normal aorta from monkey, (2) in neointimal vascular smooth muscle cells (VSMCs) vs. medial VSMCs from rat following aortic balloon injury, and (3) in ligated vs. normal carotid from mouse. Studies using mass spectroscopy, pharmacological inhibition, siRNA, and in vitro phosphorylation identify PKC-βI as a kinase that mediates Nox1 phosphorylation and subsequent ROS production and VSMC migration. Site-directed mutagenesis of predicted Nox1 phospho-residues revealed that cells expressing mutant Nox1 T429A have a significant decrease in TNF-α-stimulated ROS production, VSMC migration and Nox1 NADPH oxidase complex assembly compared to cells expressing wild-type Nox1. Isothermal calorimetry (ITC) revealed that a peptide containing the Activation Domain of NoxA1 (LEPMDFLGKAKVV) binds to phosphorylated Nox1 peptide (KLK-phos-T(429)- QKIYF) but not non-phosphorylated Nox1 peptide. These findings indicate that phosphorylation of Nox1 residue T429 by PKC-βI promotes TNF-α-induced Nox1 NADPH oxidase complex assembly, ROS production, and VSMC migration. Nox1 localization and trafficking studies reveal that Nox1 endocytosis is necessary for TNF-α-induced Nox1 ROS production; and that mutation of a Nox1 VLV motif inhibits Nox1 endocytosis and ROS production. These studies have provided new evidence that phosphorylation and sub-cellular localization are involved in the regulation of Nox1 ROS production and cell migration and offer new insights as to how Nox1 activity can be targeted for the purpose of treating Nox1-mediated diseases.
16

A Functional Role for Doscoidin Domain Receptor 1 (Ddr1) in the Regulation of Inflmmation and Fibrosis During Atherosclerotic Plaque Development

Franco, Christopher 24 September 2009 (has links)
Collagens are abundant components of the extracellular matrix in the atherosclerotic plaque. In addition to contributing to lesion volume and mechanical stability, collagens can influence the behavior of macrophages and smooth muscle cells (SMCs) and have profound effects on both inflammation and fibrosis during lesion development. The aim of this thesis was to define a functional role for the discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine kinase, in murine models of atherogenesis. In our first study, using Ddr1+/+;Ldlr-/- and Ddr1-/-;Ldlr-/- mice fed a high fat diet, we identified DDR1 as a novel positive regulator of atherogenesis. Targeted deletion of DDR1 attenuated atherosclerotic plaque development by limiting inflammation and accelerating matrix accumulation and resulted in the formation of macrophage poor, matrix rich lesions. In the second study, we used bone marrow transplantation to generate chimeric mice with a deficiency of DDR1 in bone marrow derived cells and reveal a central role for macrophage DDR1 in atherogenesis. Deficiency of DDR1 in bone marrow derived cells reduced lesion size by limiting macrophage accumulation in the developing plaque. Moreover using BrdU pulse labeling, we demonstrated reduced monocyte recruitment into the early fatty streak lesions of Ddr1-/-;Ldlr-/- mice. In our third study, we again utilized bone marrow transplantation to generate mice with deficiency of DDR1 in the host derived tissues such as the vessel wall and uncovered a distinct role for DDR1 expressed on resident vessel wall smooth muscle cells in the regulation of matrix accumulation and fibrous cap formation during atherogenesis. Deficiency of DDR1 in vessel wall cells resulted in robust accumulation of collagen and elastin and resulted in the formation of larger atherosclerotic plaques, with thick fibrous caps. Taken together, these studies support a critical role for DDR1 in the development of the atherosclerotic plaque. We demonstrate that DDR1 exerts distinct and opposing effects on lesion size by regulating both monocyte recruitment and matrix accumulation. These studies underscore the importance of collagen signaling during atherogenesis, and identify DDR1 as a key transducer; providing signals that regulate both inflammation and fibrosis during atherogenesis.
17

Gene regulation in embryonic development

Losa Llabata, Marta January 2016 (has links)
Branchial arches (BAs) are a series of transient structures that develop on the ventro-lateral surface of the head in vertebrate embryos. BAs initially appear as a series of similar segments; as development proceeds each BA will contribute to different structures. Here, it was investigated the transcriptional mechanisms that instruct the different fates of the BAs in development. Initially, each BA contains a blood vessel, known as aortic arch (AA) artery, that connects the dorsal aorta with the heart. Remodelling of the AAs is crucial to form the adult heart circulation. This process leads to regression of the anterior AAs, running though the first and second BAs (BA1 and BA2), and persistence of the AAs contained in more posterior BAs (PBA). To identify the mechanisms that control remodelling of the AAs, we compared the transcriptomes and epigenomic landscapes of different BAs. Using RNA-seq and H3K27Ac ChIP-seq, we uncovered the activation of a vascular smooth muscle cell (VSMC) differentiation transcriptional program exclusively in the PBAs (and not in BA1/BA2). In support of this finding, we show that VSMC differentiation occurs specifically in the PBAs, but not BA1-2 in mouse embryonic development. Despite the absence of VSMC differentiation in developing BA1-2, cells harvested from these tissues reveal a spontaneous tendency to differentiate towards VSMC fate when grown in vitro, and activate several VSMC-specific genes (Myocd, Acta2, Tagln, Jag1). Together, our results suggest that forming VSMCs is a key process for the persistence of AAs. We also showed that cells derived from all BAs have the potential to differentiate to VSMCs in vitro. However, only cells in the PBAs differentiate to VSMCs in vivo, resulting in the maintenance of posterior AAs. In this study, we also uncovered a novel transcriptional principle that specifies the fate of BA2. Using ChIP-seq, we found that binding of Meis transcription factors establish a ground pattern in the BAs. Hoxa2, which specifies BA2 identity, selects a subset of Meis-bound sites. Meis binding is strongly increased at these sites, which coincide with active enhancers, linked to genes highly expressed in the BA2 and regulated by Hoxa2. Thus, Hoxa2 modifies a ground state binding of Meis to instruct segment-specific transcriptional programs.
18

Homeobox A4 Suppresses Vascular Remodeling as a Novel Regulator of YAP/TEAD Transcriptional Activity / ホメオボックスA4はYAP/TEAD転写活性の新規制御因子として、血管リモデリングを抑制する

Kimura, Masahiro 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22641号 / 医博第4624号 / 新制||医||1044(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 山下 潤, 教授 湊谷 謙司, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
19

Interleukin-2 Receptor Alpha Nuclear Localization Impacts Vascular Smooth Muscle Cell Function and Phenotype

Dinh, Kristie Nhi 01 September 2021 (has links)
No description available.
20

Fenotypová plasticita cévních hladkosvalových buněk / Phenotypic plasticity of smooth muscle cells

Misárková, Eliška January 2015 (has links)
Vascular smooth muscle cells display a certain level of phenotype plasticity. Under specific conditions fully differentiated cells are able to undergo dedifferentiation and to restart growth and proliferation. An organ culture method is a useful technique for the analysis of dedifferentiation of vascular smooth muscle cells, because it provides an opportunity for studying the changes in cell phenotype. The aim of this study was to investigate the basic contractile characteristics in rat femoral arteries cultured for different time periods (from one to three days). In addition, the effects of fetal bovine serum (FBS), that contains various growth factors and other biological active molecules, on contractile function were studied. We also tried to attenuate cell dedifferentiation by lowering the calcium influx, because calcium is an important second messenger participating in cell growth and proliferation. To achieve this goal we used cultivation with nifedipine, a voltage-dependent calcium channel inhibitor. The cultivation without FBS slightly decreased arterial contractility, whereas the cultivation with FBS decreased arterial contractility considerably. The major change in contractility of arteries cultivated with FBS occurred approximately within 24 hours of cultivation. The cultivation with...

Page generated in 0.0795 seconds