• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Paleohydrology and Paleoecology of the Neogene Siwalik rocks, Nepalese Himalaya using multi-proxy lipid biomarker isotopic study

Neupane, Prabhat Chandra 19 May 2017 (has links)
This study deploys compound-specific multi-proxy isotopic study of lipid biomarkers to understand Neogene climatic and ecological variabilities in the Himalayan foreland. The investigation of compound-specific carbon and hydrogen isotopes along with glycerol dialkyl glycerol tetraether (GDGT) is the first of its kind for the Nepalese Siwalik. A total of 49 mudstone (and some paleosol) samples were collected from the paleomagnetically age-constrained Siwalik strata in the Surai Khola and Karnali River sections. δ13C results suggest a domination of C3 trees between 12 and 8.5 Ma, and a stepwise expansion of C4 grasses starting gradually at 8.5 Ma and culminating rapidly around 5.5 Ma. δD results show an overall gradual increase in rainfall since 12 Ma, with a rapid intensification around 5.5 Ma. The negative correlation between rainfall and GDGT-derived paleotemperature prior to 5.5 Ma indicates that the region experienced higher rainfalls during colder periods and vice versa. We propose that this negative correlation could be related to the strong presence of mid-latitude westerlies in the region because of the subdued Himalayas, when summer monsoon winds were weaker, that brought enhanced winter-precipitation particularly during colder periods. After 5.5 Ma, our data show a conspicuous positive correlation between rainfall and annual temperature, indicating the onset of modern-style seasonality in rainfall in the Indian subcontinent, which generates more rainfall during summer than during winter. Notably, this initiation of the Indian monsoon around 5.5 Ma favored the dominance of C4 grasses over C3 trees that is reflected in our δ13C data.
22

Identifying long term patterns and drivers of vegetation structure in an African savanna using stable carbon and nitrogen isotopes

Ghaui, Mark 01 February 2017 (has links)
Savanna systems are complex and dynamic in space and time. Climate, fire, herbivory and nutrients have been identified as structuring agents of savanna form and function, but their interactions and feedbacks with one another and vegetation are poorly resolved. Increasing the spatial and temporal scope of studies will help to improve this situation, as demonstrated in recent studies in the spatial dimension in particular. This study aims to investigate vegetation and Nitrogen cycling changes over time in a diverse patch mosaic landscape in Hluhluwe-iMfolozi Park to identify drivers of vegetation structure and their dynamism over time. Sediment from a 150cm core (taken using a Russian corer) was analyzed for stable ¹³C and ¹⁵N isotope abundances, and C:N ratio of soil organic matter. The base of the core was dated at 2380±40cal.Yr.BP. δ¹³C, δ¹⁵N and C:N of soil organic matter was found to be variable over time. δ¹³C followed a pattern of stable periods of distinct abundance separated by abrupt changes; δ¹⁵N and C:N underwent changes over the same periods as δ¹³C. Vegetation follows a pattern of phase and transition as predicted by resilience theory. An aquatic vegetation phase persists around 2000cal.Yr.BP to about 500cal.Yr.BP, coinciding with a warm, wet period (including the Medieval Warm Period) with an open Nitrogen cycle. A C₄ grassland phase follows alter a transition to cool, dry conditions coinciding with the Little Ice Age, and decreasing openness of the N cycle. Recent increasing C₃ vegetation and N-openness were attributed to atmospheric CO₂ increase and Nitrogen deposition respectively. Climate is concluded to be the major driver of vegetation at this site, and a combination of climate and vegetation are responsible for changes in Nitrogen availability. Findings are discussed in relation to landscape management. Multi-proxy evidence in future studies would be useful in validating the findings of this study.
23

Implications of past and future vegetation change for the lizard fauna of Motunau Island

Bannock, Carol A. January 1998 (has links)
Abundance, distribution and habitat preferences of the lizard species present on Motunau Island, off the Canterbury coast of New Zealand, were investigated. The aim of the study was to investigate the extent to which recent vegetation change on Motunau Island has effected the lizard community and what implications this has for the future management of the Island. Three species of lizard occur on Motunau Island; the common gecko (Hoplodactylus maculatus), common skink (Oligosoma nigriplantare polychroma) and spotted skink (O. lineoocellatum). Rabbits (Oryctolagus cuniculus) were present on the island from 1862 until their eradication in 1962. Since then, vegetation on the island has changed from being tussock-dominated to being dominated by exotic weeds. Data from lizard pitfall trap surveys carried out in 1967-75 by Tony Whitaker of the Department of Scientific and Industrial Research (DSIR) were compared with new pitfall trapping data to determine if changes in the lizard population had occurred in response to these vegetation changes. The abundance of O. n. polychroma and H. maculatus does not appear to change significantly. The distribution of these two species were significantly correlated but neither showed any preference for a particular type. The abundance of O. lineoocellatum was significantly greater in 1996/97 than in the earlier DSlR surveys. This could be a result of the vegetation becoming more open and more structurally complex since the early surveys. This would offer greater opportunities for O. lineoocellatum (which is strongly heliothermic) to thermoregulate and forage. O. lineoocellatum showed no consistent significant preference towards any habitat type, although they tended to be found more in 'margin' habitat. Research into pitfall trapping and the way lizard behaviour may influence pitfall trapping data needs to be undertaken as there is a possible trap bias in this study. Management of Motunau Island needs to ensure that a structurally complex environment is maintained to ensure high numbers of all three lizard species can continue to coexist.
24

Two decades of vegetation change across tussock grasslands in New Zealand's South Island

Day, Nicola J. January 2008 (has links)
New Zealand's South Island tussock grasslands have been highly modified by human activities, including burning, grazing and introductions of exotic plants for pastoralism. Studies suggest that tussock grasslands are degraded, in that native species have declined, and exotic species have increased in both diversity and abundance. These trends are primarily thought to be related to the impacts of grazing and subsequent grazing removal. Few studies have assessed long-term changes that have occurred in tussock grasslands, and those that have are generally limited to one particular location. This thesis aimed to investigate temporal changes in community structure in tussock grasslands, and relate these changes to environmental variables and land tenure. Data were used from 90 permanently-marked vegetation transects, which were set up on 19 geographically widespread properties in areas of tussock grassland across Canterbury and Otago in the South Island of New Zealand. The transects were on land in both conservation and pastoral tenure. Each transect was 100 m, and consisted of 50 0.25 m² quadrats. The transects were measured between 1982 and 1986 (first measurement), were re-measured between 1993 and 1999 (second measurement) and again between 2005 and 2006 (third measurement). A total of 347 vascular species were observed over the 90 transects and three measurement times. Species richness declined between the first and second measurements (first time interval), and increased between the second and third measurements (second time interval), at both the small (quadrat) and large (transect) scales. Both native and exotic species declined in mean quadrat species richness during the first time interval, and then increased during the second time interval. Changes in mean quadrat species richness were similar on transects in both conservation and pastoral tenure. Multivariate analysis of species' occurrences in quadrats identified a long gradient in species composition for these 90 transects. Four key plant communities were identifed along this gradient and differed in their mean elevation: (1) Highly-modified pastoral community, (2) Short-tussock grassland community, (3) Tall-tussock grassland community, (4) Alpine mat-forming species community. A detailed investigation into temporal changes that occurred on 53 transects that occurred in short- and tall-tussock grassland communities showed that changes in species composition were not consistent over time. Transects on different properties changed in species composition by different amounts. Specifically, in ordination space, transects on two properties changed in composition significantly more than transects on one other property. The property that a transect was on also affected the way that it changed in composition, i.e. native species were more likely to have increased on transects on some properties. Transects in conservation tenure did not change in species richness or composition differently from those in pastoral tenure. Considering that many native plants in tussock grasslands are relatively slow-growing, and that these areas have been grazed and burned for more than a century, we may expect it to be some time before we can detect differences in vegetation dynamics on conservation land from that on pastoral land. The changes in the community structure of these tussock grasslands were related to a combination of environmental factors, such as soil chemistry, climate, and management factors. This study has allowed greater understanding of vegetation change in tussock grasslands, and demonstrates the importance of long-term ecological monitoring in making reliable and accurate predictions about landscape-scale changes in tussock grassland community structure.
25

Coastal Plain Pond Vegetation Patterns: Tracking Changes Across Space and Time

ODea, Claire January 2010 (has links)
<p>Coastal plain ponds are an understudied and threatened wetland ecosystem with many unique environmental attributes. Research in these ponds can investigate species-environment relationships, while simultaneously providing ecosystem-specific information crucial to their continued conservation and management. This dissertation explores patterns in coastal plain pond vegetation composition and species-environment relationships across space, through time, and in the seed bank and standing vegetation.</p><p>In a two-year field study at 18 coastal plain ponds across the island of Martha's Vineyard, Massachusetts, I investigated species-environment relationships within and among ponds. I identified vegetation species presences and abundances within 1 m2 quadrats, which ran continuously along transects established perpendicular to the water's edge. Species data were analyzed against local and landscape-scale environmental data. I also conducted a one-year seed bank study in which sediments from four coastal plain ponds were incubated in growth chambers and composition was compared to the standing vegetation. One hundred and thirty-four plant species were identified during vegetation sampling and 38 species were identified from incubated sediments.</p><p>I found significant compositional change across space in response to environmental gradients, with patterns in species composition occurring at both local and landscape scales. Elevation was the only local factor strongly correlated with species composition. Significant landscape-scale environmental factors included surficial geology and pond water salinity. Species composition was significantly correlated with hydrologic regime in 2005 but not in 2006. Overall patterns in vegetation species composition and abundance were more closely related to landscape-scale environmental variables than to local environmental variables. </p><p>I also found that coastal plain ponds undergo significant compositional change from one year to the next. Interannual variability disproportionately affected certain ponds and quadrats more than others, highlighting patterns in the relationships between compositional change and environmental attributes. Specifically, ephemeral ponds, ponds located on the moraine, ponds with high specific conductance values, and quadrats located closer to the waterline exhibited greater compositional change from 2005 to 2006 than permanent ponds, ponds located on the outwash plain, ponds with low specific conductance values, and quadrats located further from the waterline. </p><p>Finally, I found that coastal plain ponds exhibit a low degree of similarity between composition in sediments and standing vegetation. More species were identified in the standing vegetation than in the seed bank, and in most cases average species richness per quadrat was higher in the standing vegetation than in the seed bank. Seed bank and standing vegetation samples from ponds with different surficial geology were compositionally distinct. Seed bank samples from permanent and ephemeral ponds were compositionally distinct whereas standing vegetation samples were not.</p> / Dissertation
26

Remote sensing methods for environmental monitoring of human impact on sub-Arctic ecosystems in Europe

Shipigina, Ekaterina January 2013 (has links)
The role and scale of human impact on the global environment is a question of special importance to the scientific community and the world as a whole. This impact has dramatically increased since the beginning of industrialisation, yet its understanding remains patchy. The sub-Arctic plays a central role in forming the global environment due to the vast territory of boreal forest and tundra. Severe climatic conditions make its ecosystems highly sensitive to any natural and human disturbances. In this context, the dynamics of boreal vegetation, and of the forest/tundra interface (the treeline), is the most representative indicator of environmental changes in the sub-Arctic. For some time now, monitoring land cover and vegetation changes using remote sensing techniques have been a powerful method for studying human impact on environment from landscape to global scales. It is particularly efficient when applied to the sub-Arctic ecosystems. Remote sensing gives access to accurate and specific information about distant and hard-to-reach areas across forest and tundra. Despite all the e orts, there is a lack of uniformity in studying human impact, a shortage of mapping of impact over large territories and a lack of understanding of the relation between human activity and environmental response. This dissertation develops a systematic approach to monitoring land cover and vegetation changes under human impact over northern Fennoscandia. The study area extends north and south of the treeline and covers around 400,000km2 reaching from Finnmark in Norway, through Norrbotten in Sweden, Lapland in Finland up to the Murmansk region in Russia. This is the most populated and industrially developed region of the whole sub-Arctic and, therefore, suffering most from human impact. This dissertation identifies industrial atmospheric pollution, reindeer herding, forest logging, forest fires and infrastructure development as the primary types of human impact close to the treeline. For each type characteristic hotspots are identified and human impact is analysed in the context of physical environment as well as cultural, economical and political development of the area. This dissertation presents an automated workflow enabling large-scale land cover mapping in northern Fennoscandia with high throughput. It starts with automated image pre-processing using image metadata and ends with automated mapping of classification results. A single classifier for multispectral Landsat data is trained on extensive field data collected across the whole region. Open source tools are used extensively to set up the processing scripts enabling rapid and reproducible analysis. Using the developed advanced remote sensing methodology land cover maps are constructed for all identified hotspots and types of human impact. Changes in vegetation are analysed using three or four historical land cover maps for each hotspot. More than 35 Landsat TM and ETM+ images covering the period from the 1980s until 2011 are processed in an automated manner. A strong correlation between the level of impact and the scale of vegetation change is confirmed and analysed. The structure and dynamics of the local treeline and the quality of environment are analysed and assessed in the context of changing levels of impact at each hotspot and regionally.
27

Modifying Succession: A History of Vegetation Alliances on Swanton Pacific Ranch

O'Connor, Jill Wilson 01 June 2019 (has links)
This thesis conducts historical research into Swanton Pacific Ranch in the County of Santa Cruz, an interdisciplinary facility for education and research managed by Cal Poly’s College of Agriculture, Food and Environmental Sciences. The study seeks to determine whether there have been discernable changes in vegetation alliances (communities), spatially or in type, within a 110-acre Study Area from the early twentieth century to the present day and how the changes compare with other similar historical analyses in California. Historical farming and ranching uses of the area are researched, and two family case studies are presented as paradigms of potential changes to vegetation as well as the connectivity with the larger socioeconomic context of Italian immigration into California. Examination of the vegetation alliances over the course of the historical study period utilizes several types of historical imagery, including twentieth-century aerial photography, ground level photography and nineteenth-century maps. This thesis diverges from scholarship that posits substantial alteration of ecological systems by anthropogenic activities by arguing that the primary alliances and geospatial borders of the vegetation in the Study area have remained essentially stable, i.e., unchanged at a macro level, since at least the early twentieth century, and that this stability has persisted despite long-term agricultural activities. This thesis contributes to the historiography of Swanton Pacific Ranch by providing a preliminary exploration of the botanic resources and the attendant anthropogenic agricultural activities on the land that may have affected those resources. It provides a framework for further study of Ranch resources as well as the cultural context of the agricultural history of the North Coast-Santa Cruz region.
28

Vegetation change detection using remote sensing and GIS in Makhado Town, Limpopo Province, South Africa

Zongho, Kom 29 January 2016 (has links)
MEVNSC / Department of Geography and Geo-Information Sciences / Vegetation is one of the most important renewable natural resources to play a role in the preservation of the environment and biodiversity. Various land use activities such as urbanization, population growth and other anthropogenic activities, as well as climate change have been some of the major drivers which alter vegetation cover and contribute to biodiversity loss. This research study uses remote sensing and Geographical Information System to quantify vegetation and land cover change in Makhado over a five-year period (2007 - 2012). This study used multi-temporal satellite image data to identify the dynamic pattern of vegetation change and the negative impacts it has on the environment. The research uses remote sensing techniques and GIS software to analyse data. In addition, satellite imageries were used to study the spatial and temporal distribution of vegetation. The results of the study show that settlement areas have been on a stable positive and mostly uncontrolled expansion from 17.73% of the study area in 2007 to 30.52% in 2012. Vegetation on the other hand, has been on a steady decline, from 10.65% in 2007 to 5.92% in 2012, as well as the ecosystems quality on which biodiversity depends for their existence and to a greater extent the climate conditions, with an increase in temperature, methane, nitrous oxide and carbon dioxide. The monitoring of vegetation change can play a vital role in knowledge generation, best practices and as well as Environmental Monitoring and Evaluation which can be abated in the near future. This study recommends that the South Africa Government and public agencies concerned develop policies and strategies to bring about balanced, coordinated and sustainable development in the municipality and its district.
29

Regional assessment of trends in vegetation change dynamics using principal component analysis

Osunmadewa, Babatunde A., Csaplovics, E., R. A., Majdaldin, Aralova, D., Adeofun, C. O. 30 August 2019 (has links)
Vegetation forms the basis for the existence of animal and human. Due to changes in climate and human perturbation, most of the natural vegetation of the world has undergone some form of transformation both in composition and structure. Increased anthropogenic activities over the last decades had pose serious threat on the natural vegetation in Nigeria, many vegetated areas are either transformed to other land use such as deforestation for agricultural purpose or completely lost due to indiscriminate removal of trees for charcoal, fuelwood and timber production. This study therefore aims at examining the rate of change in vegetation cover, the degree of change and the application of Principal Component Analysis (PCA) in the dry sub-humid region of Nigeria using Normalized Difference Vegetation Index (NDVI) data spanning from 1983-2011. The method used for the analysis is the T-mode orientation approach also known as standardized PCA, while trends are examined using ordinary least square, median trend (Theil-Sen) and monotonic trend. The result of the trend analysis shows both positive and negative trend in vegetation change dynamics over the 29 years period examined. Five components were used for the Principal Component Analysis. The results of the first component explains about 98 % of the total variance of the vegetation (NDVI) while components 2-5 have lower variance percentage (< 1%). Two ancillary land use land cover data of 2000 and 2009 from European Space Agency (ESA) were used to further explain changes observed in the Normalized Difference Vegetation Index. The result of the land use data shows changes in land use pattern which can be attributed to anthropogenic activities such as cutting of trees for charcoal production, fuelwood and agricultural practices. The result of this study shows the ability of remote sensing data for monitoring vegetation change in the dry-sub humid region of Nigeria.
30

Disturbance, recovery and resilience in tropical forests : a focus on the coastal peat swamp forests of Malaysian Borneo

Cole, Lydia Eve Spencer January 2013 (has links)
Tropical forests have existed for up to one hundred million years, and today provide many ecosystem services vital for human well-being. They also harbour great biodiversity, which, in addition to its intrinsic value, plays a key role in the functioning of these ecosystems. Despite their local to global significance, there are still many knowledge gaps concerning the dynamic processes that govern the functioning of tropical forests. Rapid rates of deforestation and landscape conversion, predominantly for logging and industrial agriculture, are limiting the time and opportunity available to collect the information needed to fill these gaps. This research aims to shed light on the long-term ecological functioning of tropical forests, specifically investigating the history of disturbance in these ecosystems and the response of forest vegetation to past perturbations. The carbon-rich tropical peat swamp forests found along the coast of Sarawak, Malaysian Borneo, are a central focus of this study. For these forests in particular, a large deficit of knowledge surrounding their history and unique ecological functioning is coupled with some of the highest conversion rates of all tropical forest ecosystems across the world. In this thesis, palaeoecological data has been used to reconstruct temporal variability in forest vegetation coincident with external perturbations in order to identify changes in the resilience of these ecosystems through time, via indicators such as slowing rates of recovery and reduced regeneration of forest vegetation. Results suggest that tropical forest ecosystems have, for the most part, shown resilience to natural disturbances in the past, ranging from instantaneous localised tree-fall to longer-term regional climatic change; but that recent anthropogenic disturbances, of novel forms and greater intensities, are jeopardizing the potential for forest recovery and thus compromising ecosystem resilience. These findings enhance our understanding of the ecology of tropical peat swamp forests, and tropical forests more broadly. They also provide a context for contemporary tropical forest management, allowing for predictions on future responses to disturbance and enabling more ecologically sustainable landscape planning.

Page generated in 0.1166 seconds