• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pour une meilleure représentation de la diversité des biomes herbacés africains dans les modèles de végétation : apports des traits physionomiques, de l’indice de surface foliaire et des phytolithes de graminées / For a better representation of African grass biomes in vegetation models : inputs from grass physiognomic traits, leaf area index and phytoliths

Pasturel, Marine 12 March 2015 (has links)
Les biomes herbacés africains intertropicaux devraient faire face, dans un proche futur, à des changements drastiques. Les modèles dynamiques de végétation (DGVM) ont des difficultés à simuler les limites actuelles de ces biomes, notamment parce qu’ils ne prennent pas en compte la diversité des couverts herbacés en C4. Il est donc nécessaire de caractériser cette diversité floristique et physionomique afin qu’elle puisse être facilement prise en compte dans les DGVMs, et que les comparaisons modèle/données (phytolithes) soient possibles.Dans cet objectif, les traits physionomiques des graminées en C4 dominantes au Sénégal et en Afrique du Sud ont été répertoriés. Quatre groupes physionomiques ont été statistiquement discriminés. Ils varient avec la distribution spatiale des biomes et les précipitations régionales. Deux groupes sont fortement corrélés à l’indice de surface foliaire (LAI) et à la biomasse herbacée. Au Sénégal ces deux groupes sont bien différenciés par l’indice phytolithique Iph qui est un proxy des couverts herbacés intertropicaux. En Afrique du Sud, les phytolithes n’ont pas permis de tracer l’ensemble de la transition savane/steppe. Ces deux groupes physionomiques remplissent les critères nécessaires à la caractérisation de types fonctionnels de plantes (PFT). L’intégration de ces PFTs dans le modèle LPJ-GUESS améliore la simulation des biomes herbacés actuels et permet de proposer des simulations pour l’horizon 2100. Ces simulations montrent que l’augmentation de la durée de la saison sèche et de la concentration en CO2 atmosphérique devraient favoriser l’expansion simultanée des steppes et des savanes fermées aux dépens des savanes ouvertes. / Intertropical african herbaceous biomes are expected to face drastic changes in a near future. However Dynamic Global Vegetation Models (DGVMs) simulate their modern boundaries with poor accuracy, especially at the regional scale. DGVMs fail to consider the diversity of their C4 grass cover. Efforts are thus needed to characterize this floristic and physiognomic diversity in a way that can be used for enhancing DGVMs simulations, and enabling model/data (phytoliths) comparisons. For that purpose, physiognomic traits of dominant C4 grass species settled in Senegal and South Africa were listed. Four grass physiognomic groups were statistically identified. The abundance of four of them significantly varied with biome distributions and regional precipitation. Two grass physiognomic groups were additionally strongly correlated with leaf area index (LAI) and grass biomass. In Senegal, those two groups were also well traced by the Iph phytolith index which is a tropical grass cover proxy. In South Africa the limited set of phytolith data did not allow to observe the full savanna/steppe transition. The two physiognomic groups finally fulfilled the criteria required for creating Plant Functional Types (PFTs). Those new PFTs, parameterized in the LPJ-GUESS DGVM, enhanced the simulation of modern herbaceous biomes distribution in Senegal and South Africa. Simulations were additionally performed for the 2100 horizon. They evidence that the increase of both length of the dry season and atmospheric CO2 concentration should favor the simultaneous spread of steppes and closed savannas at the expense of open savannas.
2

Modellierung der vegetativen Produktivität zur Bewertung der Landdegradation im ariden und semi-ariden südlichen Afrika / Modelling of vegetative productivity to assess landdegradation in arid and semi-arid southern Africa

Niklaus, Markus 16 December 2013 (has links)
No description available.
3

Interference in the Earth system through terrestrial carbon dioxide removal

Heck, Vera 05 May 2017 (has links)
Biomasseplantagen und Aufforstung zur terrestrischen Kohlenstoffdioxid-Entfernung werden derzeit als Möglichkeit diskutiert um dem anthropogenen Treibhauseffekt entgegenzuwirken. Für die Bewertung solcher Maßnahmen ist ein umfassendes Verständnis ihrer Nachhaltigkeit und möglichen Konsequenzen erforderlich. In dieser Arbeit werden biogeochemische und hydrologische Auswirkungen von Biomasseplantagen und Aufforstung quantitativ und im Kontext der Planetarischen Grenzen (PG) analysiert. Simulationen mit einem globalen Vegetationsmodell zeigen, dass die Auswirkungen von Biomasseplantagen auf die Biosphäre nicht zu vernachlässigen sind und die der historischen landwirtschaftlichen Bodennutzung noch überschreiten können. Außerdem werden Szenarien zur räumlichen Verteilung von Biomasseplantagen unter Berücksichtigung von regionalen und globalen PG für biogeochemische Flüsse, Intaktheit der Biosphäre, Landnutzungswandel und Süßwassernutzung evaluiert. Unter Einhaltung regionaler PG können nur marginale Potentiale erzielt werden. Unter kompletter Ausnutzung des Risikobereichs könnten 1.4-6.9 GtC/a entzogen werden, abhängig von Biomasseverwertungs- und Kohlenstoffspeicherungseffizienzen. Die Relevanz von koevolutionärer Dynamik zwischen dem Kohlenstoffkreislauf und gesellschaftlichem Eingreifen wird mit einem konzeptionellen Modellierungsansatz im Kontext der PG aufgezeigt. Eine Fokussierung auf das Klimaproblem ohne die ganzheitliche Berücksichtigung von erdsystemischen Interaktionen kann ungewollte Überschreitung anderer PG zur Folge haben. Die Kombination von Bevölkerungswachstum und Nahrungsmittelbedarf mit der Minimierung von Kohlenstoff- und Biodiversitätsverlusten zeigt Möglichkeiten und Grenzen für terrestrische Kohlenstoffspeicherung auf. Räumliche Umverteilung in hochproduktive Regionen sowie substantielle landwirtschaftliche Produktivitätssteigerungen ermöglichen die Ernährung von 9 Milliarden Menschen sowie ein Kohlenstoffspeicherungspotential von bis zu 98 GtC. / Terrestrial carbon dioxide removal (tCDR) via afforestation or biomass plantations are discussed as options to counteract anthropogenic global warming. Therefore, it is important to understand sustainability limits and implications of tCDR in the context of Earth system dynamics. This thesis provides a model based assessment of biogeochemical and hydrological side-effects of biomass plantations and afforestation in the context of planetary boundaries (PBs), delimiting a safe operating space for humanity. Simulations with a global vegetation model indicate considerable biogeochemical and hydrological consequences of biomass plantations which are even larger than those of historical agricultural land use. Further, land use scenarios of biomass plantations are developed with a multi-objective optimisation model considering the PBs for biogeochemical flows, biosphere integrity, land system change and freshwater use. Respecting PBs yields almost zero tCDR potential. The transgression of PBs into a zone of increasing risk of feedbacks at the planetary scale can provide considerable tCDR potentials of 1.4-6.9 GtC/a, depending on efficiency of biomass conversion and carbon capture and storage. The importance of co-evolutionary dynamics of the Earth''s carbon cycle and societal interventions through tCDR is demonstrated with a conceptual modelling approach in the context of carbon-related PBs. A focus on climate change without an integrated trade-off assessment may lead to navigating the Earth system out of the safe operating space due to collateral transgression of other PBs. Integrating population growth and food demand while minimising carbon and biodiversity loss demonstrates opportunities and limitations for tCDR. Substantial improvements of crop and livestock productivities and the displacement of agricultural production into regions of high productivity yield sustainable terrestrial carbon sequestration potentials of up to 98 GtC while feeding 9 billion people.

Page generated in 0.2295 seconds