• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2561
  • 477
  • 313
  • 229
  • 192
  • 176
  • 63
  • 37
  • 29
  • 22
  • 22
  • 20
  • 14
  • 13
  • 13
  • Tagged with
  • 5096
  • 1600
  • 724
  • 675
  • 651
  • 532
  • 522
  • 422
  • 391
  • 370
  • 368
  • 357
  • 349
  • 340
  • 338
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Algorithm for Estimation of Wheel-Rail Friction Coefficient from Vehicle-Track Forces

Petrov, Vladislav January 2012 (has links)
In order to ensure safe travel, railway vehicles must be stable under every condition along the track. Thus, a vehicle can be certified for operation only when it can fulfil certain criteria related to the ride stability. The stability of the vehicle is highly dependent on the wheel-rail friction coefficient: higher friction results in worse ride. So, to ensure a good evaluation of the stability, the friction should be high enough during tests. The same applies to the risk of wheel flange climbing. At the present time, the wheel-rail friction can not be measured directly but there are different procedures utilized to ensure that the conditions are suitable for testing the stability of the vehicle. In this study an algorithm is proposed to estimate the wheel-rail friction coefficient by using quantities which can be measured in reality. The algorithm is tried out in computer simulations. The algorithm has two parts: in Part 1 the friction coefficient is proposed to be equal to the ratio of the total creep force divided by the normal force; in Part 2 the total creep and spin creep are estimated to observe their correlation to the estimated friction. The contact angle in Part 1 is estimated by a contact point function. In the simulations, different conditions are tried. There are four horizontal radii: tangent track, R1300m, R1000m, and R400m. Three friction coefficients are used: 0.5, 0.4 and 0.3. In addition to this, track irregularities are included. A single vehicle is simulated in two modes: capable and incapable of passive radial steering. The track irregularities caused high values of the proposed estimated friction coefficient. The values in some instances were close or equal to the input friction coefficient of the simulation. Thus, if the highest values of the estimated friction were taken over a certain distance or time, the friction of the simulation could be approximated. In most cases, the total creep was following the trend of the estimated friction. The total creep and spin creep were used as a quality factor to determine how close the estimated friction was to the simulation’s friction. In this study when the total creep was greater than 0.006 and the spin creep was less than 1.0 m-1, the estimated friction was close to the input friction. The closeness was dependent on the simulation’s friction. Higher input friction resulted in larger deviation compared to lower friction. A sensitivity analysis has been performed by deliberately introducing errors in the position of the contact point and the angle of attack. The analysis shows that the errors are not critical when the contact point is close to the tread circle. When the contact point is close to the flange, a good measurement of the wheel profile and the contact point position required to obtain accurate results. On the other hand, the errors affect the friction estimate for high spin and low total creepage. These results are discarded by the algorithm, the influence of the errors is minimized.
402

Modeling, Sizing and Control of Plug-in Light Duty Fuel Cell Hybrid Electric Vehicle

Choi, Tayoung Gabriel January 2008 (has links)
No description available.
403

Characterization of Engine and Transmission Lubricants for Electric, Hybrid, and Plug-in Hybrid Vehicles

Gupta, Abhay 19 July 2012 (has links)
No description available.
404

High-Speed Roll Stability Evaluation of A-Double Tractor-Trailers

Zheng, Xiaohan 03 January 2023 (has links)
The effect of center of gravity (CG) height and lateral and longitudinal off-centering on high-speed roll stability of A-double tractor trailers with 28-ft and 33-ft straight-rail and drop-frame trailers is evaluated through simulation and track testing. The changes in CG position due to the type of trailer (straight-rail vs. drop-frame) and laterally and longitudinally off-centered loads are considered. The simulation results show that imbalanced trailer loading induces roll instability and increases the likelihood of trailer rollover. Additionally, for equal loading conditions, the drop-frame trailers exhibit better roll stability than straight-rail trailers because of the lower CG. The simulation evaluation of 28-ft A-doubles is complemented with track testing of 33-ft trailers in alike (Drop-Drop and Straight-Straight) and mixed (Drop-Straight and Straight-Drop) arrangements of front and rear trailers, for various steering maneuvers that represent highway driving, such as exit ramp, obstacle avoidance, etc. The test trailers include specially designed load frames for emulating a loaded trailer in various loading conditions, outriggers for preventing trailer rollover, and durability structures for withstanding the torsional and bending moments resulting from the tests. Various sensors, including GPS, LiDAR units, accelerometers, string pots, and pressure transducers, are used, along with an onboard data acquisition (DAQ) system, for collecting the necessary data for post-analysis. Analysis of the test data indicates that the Drop-Drop configuration exhibits higher roll stability than the Straight-Straight configuration. For mixed trailers, the Drop-Straight configuration exhibits higher roll stability in exit ramps, but lower obstacle avoidance stability. Equipping the trailers with a roll stability control (RSC) system improves roll stability in terms of increasing the rollover threshold speed and tolerating more aggressive lane change steering maneuvers for A-doubles in various conditions. The RSC performance increases further when the brake application is synchronized between the two trailers to account for any lateral dynamic delay that naturally occurs. A novel interconnected RSC system is proposed to eliminate the lag between the RSC modules with a new control logarithm. The proposed RSC system increases the trailers' roll stability by 16% when compared with independent RSC systems that are commonly used for A-doubles. / Doctor of Philosophy / Commercial trucks play an indispensable role in transporting goods in society. A large percentage of the goods that we use daily or are delivered to our homes are transported on the nation's highways. Most often, the average automobile driver notices the presence of trucks on highways, at times with a bit of disdain. The public's perception appears to be formed by the fact that accidents involving commercial trucks are more publicized because they can cause more property damage, injuries, or even fatalities. The primary thrust of this research is to make the nation's highways safer by offering a better understanding of the dynamics of trucks with double trailers that are operated with a higher frequency on public highways. The double trailer configuration is often favored because of its larger cargo capacity and high modularity. However, their roll dynamics are not as well understood as the conventional tractor-semitrailers. Understanding the dynamics of double-trailer trucks is undoubtedly the very first step toward preventing or reducing the traffic accidents caused by rollovers. This study provides detailed analysis of roll dynamics for double trailers with imbalanced payloads. It also evaluates the effect of different types of trailers, such as drop-frame trailers (those with a "belly" in the mid-section of the trailer) and straight-rail trailers (those without a "belly") on their rollover propensity. The commercialized RSC system is evaluated for its effectiveness on the double-trailer truck. The evaluations are based on over 1,000 sets of tests in highly controlled conditions at the Transportation Research Center (TRC), a special facility for vehicle dynamic assessment in East Liberty, Ohio. It is found that the rollover dynamics of trucks with double trailers can be improved by having an awareness of the most favorable trailer arrangements according to their types of trailers and type of steering (exit-ramp or obstacle avoidance). In addition, this study provides the analysis of the commercialized RSC system for its effectiveness on the double-trailer truck. Lastly, a novel RSC system is proposed to further improve the effectiveness of the original RSC system.
405

Willans Line Modeling for Powertrain Analysis and Energy Consumption of Electric Vehicles

Harvey, Daniel R. 01 July 2021 (has links)
With electric vehicles becoming increasingly prevalent in the automotive market consumers are becoming more conscientious of total driving range. In light of this trend, reliable and accurate modeling methods are necessary to aid the development of more energy efficient vehicles with greater drivable range. Many methods exist for evaluating energy consumption of current and future vehicle designs over the US certification drive cycles. This work focuses on utilizing the well-established Willans line approximation and proposes a simplified modeling method to determine electric vehicle energy consumption and powertrain efficiency. First, a backwards physics-based model is applied to determine tractive effort at the wheel to meet US certification drive cycle demand. Second, the Willans line approximation then augments the tractive effort model and parameterizes the vehicle powertrain to establish a bi-directional power flow method. This bi-directional approach separates propel and brake phases of the vehicle over the certification City and Highway drive cycles to successfully isolate the vehicle powertrain from non-intrinsic losses, such as parasitic accessory loads. The proposed method of bi-directional modeling and parameter tuning provides significant insight to the efficiency, losses, and energy consumption of a modeled electric vehicle strictly using publicly available test data. Results are presented for eight electric vehicles with production years varying from 2016 to 2021. These electric vehicles are chosen to encapsulate the electric vehicle market as performance electric vehicles to smaller commuter electric vehicles are selected. All vehicles are modeled with an accessory load constrained between 300 and 850 W and a regenerative braking ("regen") low-speed cutoff of 5 mph with six of the eight vehicles modeled with a regenerative braking fraction of 94%. The bi-directional Willans line is then tuned to reach agreement with the net EPA energy consumption test data for each vehicle with the results presented as representative of the chosen vehicle. Lastly, a transfer function relating major model inputs to the output is derived and lends considerable insight for the sensitivity of the modeling method. Sensitivity of the proposed modeling method is conducted for a 2017 BMW i3 with the model deemed reasonably resilient to changes in input parameters. The model is most sensitive to changes in powertrain marginal efficiency with a 6% decrease of marginal efficiency leading to a 0.404 kW and 0.793 kW cycle average net battery power increase for the City and Highway drive cycles respectively. Additionally, the model is also sensitive to changes in vehicle accessory load with a direct relationship between increases of vehicle accessory load to increases of cycle average net battery power for the City and Highway cycles. The sensitivity results justify the use of the proposed model as a method for evaluating vehicle energy consumption and powertrain efficiency solely using publicly available test data. / Master of Science / Developing robust and accurate methods for analyzing electric vehicle energy consumption and powertrain efficiency is of great interest. For the purposes of this paper, powertrain refers to a motor / inverter pair which is coupled to a simple gear reduction for torque multiplication. Many vehicles are designed with motors of varying power and torque capabilities which can present challenges when attempting to effectively compare electric vehicles from different manufacturers. The proposed modeling method presented in this work utilizes public test data to derive detailed vehicle and powertrain information. Vehicle energy consumption is also modeled and compared to net EPA test data. Eight electric vehicles are modeled with each vehicle representing a specific segment of the current electric vehicle market. A bi-directional Willans line is applied to model the propel and brake phases of each electric vehicle over the US certification drive cycles. The bi-directional approach effectively isolates the vehicle powertrain from non-intrinsic losses. From the derived powertrain parameters and modeled energy consumption, the proposed method is deemed accurate and highly useful for translating public test data to detailed vehicle information. Lastly, a sensitivity analysis is presented with the proposed method deemed reasonably resilient to changes in input parameters. The modeling method is most sensitive to changes of powertrain marginal efficiency and vehicle accessory load but constraining these inputs to reasonable ranges for electric vehicles proves sufficient.
406

Development of a Next-generation Experimental Robotic Vehicle (NERV) that Supports Intelligent and Autonomous Systems Research

Baity, Sean Marshall 06 January 2006 (has links)
Recent advances in technology have enabled the development of truly autonomous ground vehicles capable of performing complex navigation tasks. As a result, the demand for practical unmanned ground vehicle (UGV) systems has increased dramatically in recent years. Central to these developments is maturation of emerging mobile robotic intelligent and autonomous capability. While the progress UGV technology has been substantial, there are many challenges that still face unmanned vehicle system developers. Foremost is the improvement of perception hardware and intelligent software that supports the evolution of UGV capability. The development of a Next-generation Experimentation Robotic Vehicle (NERV) serves to provide a small UGV baseline platform supporting experimentation focused on progression of the state-of-the-art in unmanned systems. Supporting research and user feedback highlight the needs that provide justification for an advanced small UGV research platform. Primarily, such a vehicle must be based upon open and technology independent system architecture while exhibiting improved mobility over relatively structured terrain. To this end, a theoretical kinematic model is presented for a novel two-body multi degree-of-freedom, four-wheel drive, small UGV platform. The efficacy of the theoretical kinematic model was validated through computer simulation and experimentation on a full-scale proof-of-concept mobile robotic platform. The kinematic model provides the foundation for autonomous multi-body control. Further, a modular system level design based upon the concepts of the Joint Architecture for Unmanned Systems (JAUS) is offered as an open architecture model providing a scalable system integration solution. Together these elements provide a blueprint for the development of a small UGV capable of supporting the needs of a wide range of leading-edge intelligent system research initiatives. / Master of Science
407

Suspension design for off-road construction machines

Rehnberg, Adam January 2011 (has links)
Construction machines, also referred to as engineering vehicles or earth movers, are used in a variety of tasks related to infrastructure development and material handling. While modern construction machines represent a high level of sophistication in several areas, their suspension systems are generally rudimentary or even nonexistent. This leads to unacceptably high vibration levels for the operator, particularly when considering front loaders and dump trucks, which regularly traverse longer distances at reasonably high velocities. To meet future demands on operator comfort and high speed capacity, more refined wheel suspensions will have to be developed. The aim of this thesis is therefore to investigate which factors need to be considered in the fundamental design of suspension systems for wheeled construction machines. The ride dynamics of wheeled construction machines are affected by a number of particular properties specific to this type of vehicle. The pitch inertia is typically high in relation to the mass and wheelbase, which leads to pronounced pitching. The axle loads differ considerably between the loaded and the unloaded condition, necessitating ride height control, and hence the suspension properties may be altered as the vehicle is loaded. Furthermore, the low vertical stiffness of off-road tyres means that changes in the tyre properties will have a large impact on the dynamics of the suspended mass. The impact of these factors has been investigated using analytical models and parameters for a typical wheel loader. Multibody dynamic simulations have also been used to study the effects of suspended axles on the vehicle ride vibrations in more detail. The simulation model has also been compared to measurements performed on a prototype wheel loader with suspended axles. For reasons of manoeuvrability and robustness, many construction machines use articulated frame steering. The dynamic behaviour of articulated vehicles has therefore been examined here, focusing on lateral instabilities in the form of “snaking” and “folding”. A multibody dynamics model has been used to investigate how suspended axles influence the snaking stability of an articulated wheel loader. A remote-controlled, articulated test vehicle in model-scale has also been developed to enable safe and inexpensive practical experiments. The test vehicle is used to study the influence of several vehicle parameters on snaking stability, including suspension, drive configuration and mass distribution. Comparisons are also made with predictions using a simplified linear model. Off-road tyres represent a further complication of construction machine dynamics, since the tyres’ behaviour is typically highly nonlinear and difficult to evaluate in testing due to the size of the tyres. A rolling test rig for large tyres has here been evaluated, showing that the test rig is capable of producing useful data for validating tyre simulation models of varying complexity. The theoretical and experimental studies presented in this thesis contribute to the deeper understanding of a number of aspects of the dynamic behaviour of construction machines. This work therefore provides a basis for the continued development of wheel suspensions for such vehicles. / QC 20110531
408

Limit Handling Vehicle Control for Improving Automated Vehicle Safety

Zhao, Tong January 2022 (has links)
No description available.
409

The interaction of tyre and anti-lock braking in vehicle transient dynamics

Jaiswal, Manish January 2009 (has links)
The thesis presents an intermediate modelling approach to study transient behaviour of vehicle systems, with emphasis put on simplified yet accurate representation of important system elements. A representative non-linear vehicle model is developed in MA TLAB/Simulink environment, where non-linear characteristics of tyre, suspension and braking system are included to capture the dynamic behaviour of a vehicle under transient conditions. The novel aspect of this work is the application of a representative full vehicle-tyre-ABS integrated set-up to study the complicated interaction between tyre and anti-lock braking, under a range of demanding operating conditions, including combined cornering and braking. The modelling methodology involves development of low end vehicle models, based on the Newton-Euler formulation. Subsequently, an intermediate vehicle model is devised, where more details are incorporated such as additional DOF to capture the sprung mass motion in space, along with its non-linear interactions with the un-sprung masses, large angle effects, kinematics of steering/wheels and an appropriate tyre model suitable for transient manoeuvres. Particular attention is paid to the suspension system modelling, through inclusion of non-linear effects in springs, dampers, bump-stops, and anti-roll bars, along with the jacking and anti-dive effects using the virtual work method. The model also incorporates a hydraulic brake model, based on the reduced order brake system dynamics for realistic simulation of the braking manoeuvres. A complex multi-body ADAMS/Chassis model, with much greater level of detail, has also been established to extensively compare and enhance the realistic behaviour of the intermediate vehicle model. During the simulation exercise, the intermediate vehicle model has shown good agreement with the complex ADAMS model, thus justifying the accurate representation of vehicle.non-linear characteristics, particularly the suspension system. The realistic behaviour of the vehicle model is further ascertained with a reliable GPS enabled test vehicle, by performing number of manoeuvres on test tracks, including combined cornering and braking. A representative 4-channel conventional ABS system is modelled and integrated in the intermediate vehicle model. The ABS adopts generic peak seeking approach, employing wheel deceleration and brake slip as control variables. External braking inputs, in form of stepped pressure pulses, are also separately used to represent the transient braking system dynamics. In the current work, different transient tyre models based on the single point contact approach and using Magic Formula steady-state characteristics are applied, while studying the influence of their dynamic behaviour on the ABS system. By employing a representative ABS system in a multi-body vehicle model and considering the particularly demanding situation of combined braking I cornering, it is shown that the models which are adequate for pure braking might struggle when the complicated full vehicle dynamics are excited. It is shown that the first order relaxation length approach may not be sufficient to fully satisfy the requirements of an ABS braking, especially if the relaxation length is not modelled as a variable dependent on tyre slip. In comparison, the modelling approach, where the carcass compliances and contact patch properties are explicitly represented, can handle the oscillatory tyre behaviour associated with ABS braking, in a far more accurate manner. In comparison to the earlier studies, which were mostly conducted for straight-line braking, this thesis stresses the fact that the tyre behaviour can be influenced by the complex interaction of handling and braking, and hence the effect should be captured while investigating or evaluating the performance of a tyre model in relation with ABS simulation.
410

Estudo do comportamento veicular em manobras de saídas de aclives através de um programa computacional em Matlab-Simulink / Behavior study of vehicle startability on grade maneuver through a computer program in Matlab-Simulink

Ferezini Junior, Jacob 17 December 2010 (has links)
O desempenho de um veículo de passeio em manobras de arrancada em aclives elevados é um fator muito importante a ser considerado no desenvolvimento de um novo projeto ou modificação de um projeto já existente. Este desempenho é influenciado por várias características do veículo, tais como: perfil e forma da curva de torque do motor, massa do veículo, relações de transmissão, tamanho do pneu entre outros. Este trabalho propõe uma metodologia de simulação para prever o desempenho de um veículo com tração dianteira em aclives elevados, através da utilização de um modelo de simulação desenvolvido na plataforma Matlab Simulink. Essa metodologia consiste na validação de um modelo de simulação capaz de representar todo o procedimento que envolve a saída de um veículo em um aclive elevado, levando em consideração a variação da rotação do motor, do pedal do acelerador, acoplamento da embreagem e o acionamento do freio de estacionamento. Uma medição real em veículo foi feita onde se registrou este comportamento e estes dados foram utilizados como valores de entrada no modelo de simulação. Para a correlação do modelo de simulação, foram utilizados os gráficos que representam a variação do espaço percorrido, velocidade e aceleração longitudinal, onde os resultados práticos e teóricos mostraram-se próximos mostrando que o modelo de simulação desenvolvido em MatLab/Simulink é uma opção a ser utilizada, principalmente nas fases inicias de projeto e para otimização de projetos já existentes. / The performance of a passenger vehicle maneuvering uphill sprint high is a very important factor to be considered in developing a new project or modifying an existing project. This performance is influenced by various characteristics of the vehicle, such as profile and shape of engine torque curve, vehicle weight, gear ratios, tire size and others. This paper proposes an analysis methodology to simulate the performance of a vehicle with front wheel drive in high slopes, through the use of a simulation model developed on the Matlab Simulink. This methodology consists in validating a simulation model capable of representing the entire procedure involving the removal of a vehicle in a high slope, taking into account the variation of engine speed, accelerator pedal, the clutch engaging and brake actuation parking. An actual measurement of vehicle was registered where this behavior and these data were used as input values in the simulation model. For the simulation model correlation, It was used the graphs represent the change in the space covered, vehicle speed and vehicle longitudinal acceleration, where the practical and theoretical results proved to be the next showing that the simulation model developed in Matlab/Simulink is an option be used, especially in the early stages of design and optimization of existing designs.

Page generated in 0.0355 seconds