• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing roll stability and directional performance of articulated heavy vehicles based on anti-roll control and design optimization.

Oberoi, Dhruv 01 October 2011 (has links)
This research presents an investigation to actively improve the rollover stability of articulated heavy vehicles (AHVs) during high speed manoeuvres using anti-roll control systems. A 3-dimensional (3-D) linear yaw/roll model with 5 degrees of freedom is developed. Based on this model a linear quadratic regulator (LQR) controller is designed to improve the rollover stability of a tractor/semi-trailer combination. A design optimization method for AHVs using genetic algorithms (GAs) and multibody vehicle system models is also presented. AHVs have poor manoeuvrability when travelling at low speeds on local roads and city streets. On the other hand, these vehicles exhibit unstable motion modes at high speeds, including jack-knifing, trailer sway and rollover. From the design point of view, the low-speed manoeuvrability and high-speed stability have conflicting requirements on some design variables. The design method based on a GA and a multibody vehicle dynamic package, TruckSim, is proposed to coordinate this trade-off relationship. To test the effectiveness of the design method, a tractor/semi-trailer combination is optimized using the proposed method. It is demonstrated that the proposed design method can be used for identifying desired design variables and predict performance envelopes in the early design stages of AHVs. / UOIT
2

Development of a tractor-semitrailer roll stability control model

Chandrasekharan, Santhosh 11 December 2007 (has links)
No description available.
3

High-Speed Roll Stability Evaluation of A-Double Tractor-Trailers

Zheng, Xiaohan 03 January 2023 (has links)
The effect of center of gravity (CG) height and lateral and longitudinal off-centering on high-speed roll stability of A-double tractor trailers with 28-ft and 33-ft straight-rail and drop-frame trailers is evaluated through simulation and track testing. The changes in CG position due to the type of trailer (straight-rail vs. drop-frame) and laterally and longitudinally off-centered loads are considered. The simulation results show that imbalanced trailer loading induces roll instability and increases the likelihood of trailer rollover. Additionally, for equal loading conditions, the drop-frame trailers exhibit better roll stability than straight-rail trailers because of the lower CG. The simulation evaluation of 28-ft A-doubles is complemented with track testing of 33-ft trailers in alike (Drop-Drop and Straight-Straight) and mixed (Drop-Straight and Straight-Drop) arrangements of front and rear trailers, for various steering maneuvers that represent highway driving, such as exit ramp, obstacle avoidance, etc. The test trailers include specially designed load frames for emulating a loaded trailer in various loading conditions, outriggers for preventing trailer rollover, and durability structures for withstanding the torsional and bending moments resulting from the tests. Various sensors, including GPS, LiDAR units, accelerometers, string pots, and pressure transducers, are used, along with an onboard data acquisition (DAQ) system, for collecting the necessary data for post-analysis. Analysis of the test data indicates that the Drop-Drop configuration exhibits higher roll stability than the Straight-Straight configuration. For mixed trailers, the Drop-Straight configuration exhibits higher roll stability in exit ramps, but lower obstacle avoidance stability. Equipping the trailers with a roll stability control (RSC) system improves roll stability in terms of increasing the rollover threshold speed and tolerating more aggressive lane change steering maneuvers for A-doubles in various conditions. The RSC performance increases further when the brake application is synchronized between the two trailers to account for any lateral dynamic delay that naturally occurs. A novel interconnected RSC system is proposed to eliminate the lag between the RSC modules with a new control logarithm. The proposed RSC system increases the trailers' roll stability by 16% when compared with independent RSC systems that are commonly used for A-doubles. / Doctor of Philosophy / Commercial trucks play an indispensable role in transporting goods in society. A large percentage of the goods that we use daily or are delivered to our homes are transported on the nation's highways. Most often, the average automobile driver notices the presence of trucks on highways, at times with a bit of disdain. The public's perception appears to be formed by the fact that accidents involving commercial trucks are more publicized because they can cause more property damage, injuries, or even fatalities. The primary thrust of this research is to make the nation's highways safer by offering a better understanding of the dynamics of trucks with double trailers that are operated with a higher frequency on public highways. The double trailer configuration is often favored because of its larger cargo capacity and high modularity. However, their roll dynamics are not as well understood as the conventional tractor-semitrailers. Understanding the dynamics of double-trailer trucks is undoubtedly the very first step toward preventing or reducing the traffic accidents caused by rollovers. This study provides detailed analysis of roll dynamics for double trailers with imbalanced payloads. It also evaluates the effect of different types of trailers, such as drop-frame trailers (those with a "belly" in the mid-section of the trailer) and straight-rail trailers (those without a "belly") on their rollover propensity. The commercialized RSC system is evaluated for its effectiveness on the double-trailer truck. The evaluations are based on over 1,000 sets of tests in highly controlled conditions at the Transportation Research Center (TRC), a special facility for vehicle dynamic assessment in East Liberty, Ohio. It is found that the rollover dynamics of trucks with double trailers can be improved by having an awareness of the most favorable trailer arrangements according to their types of trailers and type of steering (exit-ramp or obstacle avoidance). In addition, this study provides the analysis of the commercialized RSC system for its effectiveness on the double-trailer truck. Lastly, a novel RSC system is proposed to further improve the effectiveness of the original RSC system.
4

Experimental Evaluation of Roll Stability Control System Effectiveness for A-double Commercial Trucks

Van Kat, Zachary Robert 05 January 2022 (has links)
Some of the results of an extensive track testing program at the Center for Vehicle Systems and Safety (CVeSS) at Virginia Tech for evaluating the roll stability of commercial trucks with 33-ft A-double trailers are evaluated. The study includes straight-rail trailers with heavy and light loading conditions. Commercial trucks are more susceptible to rollovers than passenger cars because of their higher center of gravity relative to their track width. Multi-trailer articulated heavy vehicles, such as A-doubles, are particularly prone to rollovers because of their articulation and rearward amplification. Electronic stability control (ESC) has been mandated by the National Highway Safety Administration (NHSTA) for Class 8 trucks and busses since 2017. When detecting oversteer or understeer, ESC automatically activates the brakes at the correct side of the steer and/or drive axle(s) to regain steering stability. ESC, however, often cannot sense the likelihood of trailer rollover in multi-trailer articulated heavy vehicles because of the articulation between the trailers and tractors. As a result of this, trailers are often equipped with roll stability control (RSC) systems to mitigate speed-induced rollovers. Sensing the trailer lateral acceleration, RSC activates the trailer brakes to reduce speed and lower the likelihood of rollover. However, a limited number of past studies have shown that the trailer roll angle may provide an earlier indication of a pending rollover than the lateral acceleration. This study intends to provide further analysis in this regard in an effort to improve the effectiveness of RSC systems for trailers. An extensive amount of data from track testing with a 33-ft A-double under heavy and light loading is evaluated. Particular attention is given to lateral accelerations and trailer roll angles prior to rollover and relative to RSC activation time. The study's results indicate that the trailer roll angle provides a slightly earlier indication of rollover than lateral acceleration during dynamic driving conditions, potentially resulting in a timelier activation of RSC. Of course, detecting the roll angle is often more challenging than lateral acceleration, which can be detected with an accelerometer. Additionally, the roll angle measurement may be subjected to errors and possibly unwanted RSC engagement. The study's results further indicate that the trailer-based RSC systems effectively mitigate rollovers in both quasi-steady-state and dynamic driving conditions. / Master of Science / Some of the results of an extensive track testing program at the Center for Vehicle Systems and Safety (CVeSS) at Virginia Tech for evaluating the roll stability of commercial trucks with 33-ft A-double trailers are evaluated. "33-ft A-doubles" commonly refer to a commercial truck that has a tractor with two trailers (in this case 33-ft in length) that are connected by an A-dolly. Their modularity and ease of connecting and disconnecting at various drop stations have made such commercial vehicles a common scene on U.S. highways due to the proliferation of e-commerce cargo. Compared to a single-unit or tractor semi-trailer combination, the double- or triple-trailer configurations offer several logistical benefits that make them more advantageous. The multi-trailer vehicles can carry more cargo per driver, lowering driver, fuel, and equipment costs significantly. There are, however, some challenges to operating multi-trailer articulated vehicles. On average, their accidents are more expensive than single-trailer or single-unit trucks. Additionally, they are more susceptible to rolling over and causing property damage, injuries, and at times fatalities. To reduce rollovers, systems with automated braking, called roll stability control (RSC), are often installed on the trailers. RSC applies the trailer brakes if it senses that the vehicle speed — the primary cause of most commercial vehicle accidents — exceeds the safe limit for negotiating a turn. In this study, we intend to evaluate the effectiveness of roll stability control (RSC) systems for reducing the likelihood of speed-induced rollovers. We will also explore ways of improving their performance. Namely, we will evaluate whether sensing the lateral acceleration of the trailer or its roll angle would provide a better means for timely activation of RSC. The study's results indicate that, although more challenging to measure, the trailer roll angle provides a slightly sooner indication of a pending rollover than lateral acceleration. The results also suggest that RSC systems vastly reduce the number of speed-induced rollovers in trucks with 33-ft A-double trailers under different trailer configurations and cargo weights.
5

Low-Speed Maneuverability, High-Speed Roll-Stability, and Brake Type Performance of Heavy Truck 33-ft Double Trailers

Neighborgall, Campbell Reed 02 August 2022 (has links)
This dissertation details the methods and analysis of extensive physical tests and simulation conducted by the Center for Vehicle Systems and Safety (CVeSS) at Virginia Tech on the maneuverability, roll-stability, and brake type performance of 33-ft double trailers. Little literature exists for 33-ft doubles because they are uncommon on the U.S. roads due to current federal restrictions limiting long-combination vehicles to 28-ft doubles. With the continual rise in e-commerce, however, there is a push by package carriers on legislation to permit carriers to introduce 33-ft doubles into their fleets. Three separate studies detailed herein highlight 33-ft double trailers' off-tracking, roll-stability with stability control systems, and brake type influence on braking performance. The first study compares low-speed off-tracking of a 33-ft double to 28-ft double and 53-ft single configurations via simulation and full-scale tests. Novel numerical tractrix models are introduced and compared to existing models commonly used to evaluate low-speed off-tracking of long combination vehicles (LCVs). Unlike pre-existing models, accuracy of one of the proposed models is largely unaffected by input path resolution and regularity—a significant benefit for reducing computational cost and easing implementation for many applications. Full-scale tests are conducted at Virginia Tech and an extensive uncertainty analysis is detailed for the test procedure and measurements. Field tests compare favorably with simulations for all tested maneuvers and trailer configurations and clearly demonstrate the order from least to most off-tracking as 28-ft double, 33-ft double, and 53-ft single. The 33-ft doubles have slightly larger off-tracking than 28-ft doubles, whereas 53-ft singles have substantially larger off-tracking than 28-ft and 33-ft doubles. The second study evaluates 33-ft double straight-rail trailers rollover propensity with different stability control system implementations: stock (none), tractor electronic stability control (ESC), trailer roll-stability control (RSC), and RSC+ESC. Extensive test vehicle instrumentation and structural reinforcement are detailed for the test preparations. Tests are conducted on a test track with either driver or robot steering. On their own, both ESC and RSC clearly reduce the rollover propensity of the trailers for all maneuvers, and the trailers exhibit the highest roll-stability when both RSC and ESC are active. The tested ESC and RSC modules are off-the-shelf products from industry suppliers chosen by the program sponsor. The third study compares trailer drum and disc brake performance in three conditions: straight-line braking distance, brake type influence on RSC performance, and roll dynamics in a combined braking and turning maneuver. A braking robot is designed, fabricated, and implemented to provide precise and repeatable brake pedal application. Test results suggest that disc brakes tend to provide reduced braking distance and are less susceptible to brake fade than drum brakes. Anti-lock braking system (ABS) and suspension dynamics react differently to the two brake types. Small, noticeable differences in RSC performance are evident between the two brake types. Within the test limitations, rollover dynamics were not clearly different between the two brake types for braking-in-turn maneuvers, performed for a large range of entry speeds and brake activation delay relative to the start of steering. / Doctor of Philosophy / Due to their large size, mass, and high center-of-gravity, heavy vehicles, especially long combination vehicles (LCVs) require a substantial amount of space to negotiate turns, long distances to brake from highway speeds to a stop and are susceptible to rollover. Combination vehicles on the U.S. roads are commonly in 53-ft single trailer or 28-ft double trailer configurations. With the continual rise of e-commerce, package carriers are pursuing 33-ft double trailers to increase each vehicle's cargo volume. Before introducing these trailers into a fleet, there is a need to understand (1) if 33-ft doubles can negotiate existing routes traveled by 28-ft double and 53-ft single configurations, (2) if 33-ft doubles can benefit from existing stability control systems, and (3) how trailer brake types perform on 33-ft doubles. Three separate studies are conducted to address these topics. The first study compares off-tracking for the three mentioned trailer configurations through low-speed, real-world maneuvers via physical full-scale tests and simulation. Off-tracking is a metric illustrative of maneuverability and is defined as the relative distance in paths of the rearmost axle to the lead steer axle. New mathematical models are introduced and used to simulate vehicle motion through low-speed maneuvers. The simulation and field tests determine that, for all tested maneuvers, the order from smallest to largest off-tracking is 28-ft double, 33-ft double, and 53-ft single configurations, with the 33-ft doubles having slightly larger off-tracking than 28-ft doubles. This suggests that 33-ft doubles can travel through routes typically traveled by a 53-ft single but need slightly more space on the road than a 28-ft double. The second study tests 33-ft double trailers with and without stability control systems. Tests, conducted at a test track, are designed to replicate real-world maneuvers that induce trailer rollover. It is found that the 33-ft double trailers are clearly less likely to rollover with the tested stability enhancement systems than without. The tests also illustrate that the different tested control systems' effectiveness in reducing rollover propensity is maneuver dependent. The third study tests the braking distance, brake influence on the stability control systems, and rollover dynamics while braking-in-turn for two different types of brakes, drum brakes and disc brakes. Small but evident differences in the performance of the two brake types suggest disc brakes could provide shorter stopping distance and time at highway speeds, compared with drum brakes. The studies detailed in this dissertation provide valuable information on 33-ft doubles dynamics and provide guidance for their safe introduction on the U.S. roadways.
6

Hardware in the Loop Simulation of a Heavy Truck Braking System and Vehicle Control System Design

Ashby, Ryan Michael 09 August 2013 (has links)
No description available.

Page generated in 0.1009 seconds