• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal production scheduling for vehicle assembly at Volkswagen of South Africa (Pty) Ltd.

Miller, Anthonette 12 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2008. / ENGLISH ABSTRACT: Volkswagen of South Africa (Pty) Ltd. (VWSA) is part of the Volkswagen Group, which originated in Germany. VWSA’s production plant is situated in Uitenhage in the Eastern Cape and produces ± 100 000 cars per year with ± 5 800 employees. At the time of writing this report, VWSA had three platforms on which it produced the Citi Golf, Polo/Polo Classic and Golf 5/Jetta 5. It takes on average four days to produce a vehicle, but up to 17 weeks lead time is required before production can start. This lead time is needed to procure, transport and receive the single parts from suppliers in South Africa, Europe and other countries. The time window required in order to manufacture a vehicle is therefore relatively long. For this reason it is important that VWSA’s production schedule is firstly planned properly and secondly optimised continuously and timely, as circumstances change and unforeseen conditions arise. VWSA assemble vehicles “to stock” and not “to order”. This means that a production schedule is planned and executed, based on forecasted volumes and not on actual customer orders. The monthly production offline demand is received from marketing, which includes both the volume requirements for domestic and export units. Currently the production scheduling process of VWSA is performed manually in an Excel spreadsheet. This is a time consuming process that could be exposed to mistakes. Much iteration is performed manually in order to achieve the best solution. The aim of this research report was to develop an optimisation model for production after the fixed lead time period in order to ensure finished products on time as per the local and export demand. VWSA requires a 52 week rolling production schedule, which should take all the various constraints into account. The objective of the production schedule is to determine shift patterns and production units per shift that will provide some consistency, by avoiding short time, overtime, plant closures, variations in production rates, etc. as far as possible. More importantly, the production schedule must optimise the use of resources and minimise costs. A scheduling model was developed for each of the three model lines, making use of Mixed Integer Programming. The constraints and applicable costs were built into each individual model. Each model was solved with the use of Premium Solver Platform software, due to the fact that it has advance capabilities and includes a Nonlinear GRG Solver. Optimal solutions were found, satisfying all the various constraints, within seconds compared to the hours and days required for the current manual scheduling process. A summary sheet was developed, combining the individual model line schedules for distribution and presentation purposes. This summarises the required production units per day, week and cumulative. In addition it includes the required export units that are first priority to be produced per week. To improve decision making, a column was included to indicate the quantity of units of each model type that must be produced during overtime. This model provides management with the information required to make decisions regarding detailed production scheduling. / AFRIKAANSE OPSOMMING: Volkswagen van Suid-Afrika (Pty) Ltd. (VWSA) is deel van die Volkswagen Groep, wat onstaan het in Duitsland. VWSA se produksie aanleg is geleë in Uitenhage in die Oos-Kaap en vervaardig ± 100 000 voertuie per jaar deur gebruik te maak van ± 5 800 werknemers. Ten tyde van die skryf van hierdie verslag het VWSA drie platforms gehad waarop dit die Citi Golf, Polo/Polo Classic en Golf 5/Jetta 5 vervaardig het. Dit neem gemiddeld vier dae om ’n voertuig te vervaardig, maar kan tot 17 weke leityd benodig voordat produksie kan begin. Die leityd is nodig om enkel komponente van verskaffers in Suid-Afrika, Europa en ander lande te bestel, vervoer en te ontvang. Die tydperk wat benodig word om ’n voertuig te vervaardig is dus relatief lank. As gevolg van hierdie rede is dit belangrik dat VWSA se produksie skedule eerstens deeglik beplan word en tweedens aanhoudend en betyds ge-optimeer word soos omstandighede verander. VWSA vervaardig voertuie vir voorraad en nie op bestellings nie. Dit beteken dat ’n produksieskedule beplan en uitgevoer word, gebasseer op vooruitgeskatte volumes en nie op konkrete bestellings van kliënte nie. Die maandlikse produksie aanvraag word ontvang vanaf die Bemarkings-departement en sluit beide binnelandse en uitvoer aanvraag in. Die produksie skedulering van VWSA word tans in ’n Excel sigblad verrig. Dit is ’n tydrowende proses wat blootgestel is aan moontlike foute. Baie iterasies word benodig om uiteindelik die mees gepaste oplossing te vind. Die doel van hierdie navorsingsverslag was om ’n optimeringsmodel vir produksie na die vaste leityd tydperk te ontwikkel, met die doel om te verseker dat klaarprodukte betyds volgens die binnelandse en uitvoer aanvraag gelewer word. VWSA benodig ‘n 52 week rollende produksieskedule wat al die verskeie beperkings in ag neem. Die doel van die produksieskedule is om skofpatrone en volumes per skof te bepaal wat uiteindelik konsekwentheid verskaf deur korttyd, oortyd, aanlegsluitings, variasies in lynspoed, ens. te beperk. Meer belangrik, die produksieskedule moet die gebruik van bronne optimeer en kostes minimeer. ’n Skeduleringsmodel is ontwerp vir elkeen van die drie modellyne, deur gebruik te maak van Gemengde Heeltal Programmering. Die toepaslike beperkings en kostes is by elke individuële model ingebou. Elke model is opgelos deur gebruik te maak van “Premium Solver Platform” sagteware, as gevolg van die feit dat dit gevorderde vermoëens het asook “Nonlinear GRG Solver” insluit. Binne sekondes is optimale oplossings gevind, wat ook die beperkings bevredig, in teenstelling met die ure en dae wat benodig word vir die huidige skeduleringsproses. ‘n Opsommende blad is ontwikkel wat die individuële skedules saamvat vir verspreidings- en voordrag doeleindes. Dit bevat die beplande produksievolumes per dag, week en kumulatief. Addisioneel bevat dit ook die vereiste uitvoervolumes per week wat eerste prioriteit geniet. Om besluitneming te verbeter is ‘n kolom ingesluit wat aandui hoeveel eenhede van elke model tipe word benodig gedurende oortydproduksie. Die model verskaf aan bestuur die inligting wat benodig word om detail besluite oor produksieskedulerings te neem.
2

Organization of the Controller's Division, Dallas Assembly Plant of the Ford Motor Company

McCullough, H. E., Jr. 08 1900 (has links)
The purpose of this study was to conduct a case study of the controller function of one of the assembly plants, which is typical in organization and functions of all the assembly plants within the Ford Division. The Controllership of the Dallas Assembly Plant of the Ford Motor Company was studied, and its functions and relationship to management were shown.
3

Human error management 4.0 : Augmented Reality Systems as a tool in the quality journey / Hantering av mänskliga fel 4.0 : Augmented Reality som ett verktyg i kvalitetsresan

ETEMADY QESHMY, DANIAL, MAKDISI, JACOB January 2018 (has links)
The manufacturing industry is shifting, entering a new era with smart and connected devices. The fourth industrial revolution (Industry 4.0) is promising increased growth and productivity by the Smart Factory and within the enabling technologies is Augmented Reality (AR). This is a technology that can be used to augment the reality with digital information. At the same time as the technology is introduced, errors in manufacturing are a problem which are affecting the productivity and the quality. The errors can be caused by humans and companies strive to eliminate the errors caused by humans. This research aims to find the main causes of human errors in assembly lines and thereafter explores whether AR is an appropriate tool to be used in order to address those issues. Based on a literature review that identified and characterized a preliminary set of root causes for human errors in assembly lines, these causes were empirically studied in an exercise that covered an in-depth case study at a multinational automotive company. Data in form of interviews and deviation reports have been used to identify the causing factors and the result showed that the main causes of human errors are the amount of thinking, deciding and searching for information which affected the cognitive load of the operator and in result their performance. Several interviews with experts in AR allowed to verify if this technology would be feasible to solve or mitigate the found causes. Besides that, in repetitive manual assembly operations, AR is better used showing the process in order to train new operators, at the same time as for experienced operators AR show information only when an error occurs and when there is a need of taking an active choice is more appropriate. Nevertheless, while theoretically able to managing human error when fully developed, the desired application makes the augmentation of visual objects redundant and increasingly complex for solving the identified causes of errors which questions the appropriateness of using AR systems. However, the empirical findings showed that for managing human errors, the main bottleneck of an AR system is the software and AI. / Den tillverkande industrin skiftar och går in i en ny era där smart och uppkopplad teknologi introduceras i de operativa delarna av tillverkningen. Denna fjärde industriella revolution (Industry 4.0) som den även kallas för med smarta fabriker, utlovar ökad produktivitet och tillväxt. Bland de teknologier som representeras i detta nya landskap återfinns Augmented Reality (AR), vilket är en teknik som används för att förstärka verkligheten med digital information. I samband med att denna nya teknik introduceras, är avvikelser i produktion ett problem som påverkar företags produktivitet och kvalitet. Den mänskliga faktorn är en bidragande del till detta problem och företag strävar efter att eliminera felen orsakade av människor. Denna studie syftar till att hitta orsakerna till att människor orsakar fel i produktion och därefter utforska om AR är ett lämpligt verktyg att använda för att råda bot på dessa orsaker och därmed eliminera felen. Genom en litteraturstudie har det identifierats ett antal faktorer som påverkar den mentala belastningen hos människor i produktionssammanhang. Dessa faktorer har därefter undersökts genom en fallstudie hos en multinationell tillverkare av kommersiella fordon. Datainsamling i form av intervjuer och avvikelsedata har använts för att identifiera de påverkande faktorerna och resultaten pekade på att behovet av att behöva tänka, leta efter information och fatta beslut påverkade den mentala belastningen mest. Intervjuer hölls med forskare och montörer för att definiera en lämplig AR funktion som sedan undersöktes genom flera intervjuer med forskare inom AR för att verifiera om AR är en lämplig teknik att använda för de identifierade orsakerna. I termer av AR i en arbetsmiljö med repetitiva aktiviteter efterfrågas en funktion som visualiserar fel för montörer som är erfarna medan det för oerfarna montörer är bättre med visualisering av hela arbetsprocessen. Men, trots att systemet i teorin är lämpligt att använda för att hantera orsakerna till att felen uppstår så är den efterfrågade funktionen överflödig då visualisering kommer visas väldigt sällan samt att tekniken är väldigt komplex. Detta gör att det går att ifrågasätta hela funktionen av att använda AR system i det fall som studerades. Dessutom visade sig tekniken vara olämplig att använda i den miljö fallet utspelar sig i på grund av svårigheter med artificiell intelligens (AI).

Page generated in 0.0435 seconds