Spelling suggestions: "subject:"ehicle monitoring"" "subject:"aehicle monitoring""
1 |
THE VEHICLE MONITORING SYSTEM BASED ON GPRSXu, Liu, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The Vehicle Monitoring System based on GPRS is a system using GPRS network to transmit data, including location data, time data and so on .It has many advantages compared with those systems based on other communication modes. The key of the system lies in how to build up the connection with exterior data network. In this paper, the constitution of the system is introduced, and the course of building up connection with exterior data network is described in detail.
|
2 |
Modelagem do comportamento espaço-temporal de veículo rastreado. / Modelling the space-temporal behavior of tracked vehicle.Shinohara, Eduardo Jun 08 October 2013 (has links)
No Brasil existe a perspectiva de crescimento expressivo do volume de dados a ser processado pelas prestadoras de serviços de rastreamento em decorrência do aumento natural do uso de sistemas de rastreamento e também para atender a Resolução 330 de 2009 e Deliberação 135 de 30/01/2013 do Conselho Nacional de Trânsito (CONTRAN). Este crescimento gera a necessidade da incorporação de ferramentas analíticas nos sistemas de gerenciamento do rastreamento e monitoramento de veículos e na gestão de risco, para aumentar a sua eficiência e atender o crescimento do mercado. O objetivo desta dissertação é de propor uma metodologia que permita caracterizar o comportamento de movimentação de um veículo, com a finalidade de auxiliar o processo de tomada de decisão no gerenciamento e monitoramento de veículos. A caracterização do comportamento de movimentação do veículo foi feita pela geração de um modelo analítico do comportamento de movimentação, coletando os dados pretéritos da posição espacial e temporal. Este modelo baseia-se na movimentação e considera os aspectos comportamentais espaciais e temporais de forma independente. A caracterização do comportamento gera informações para identificar o comportamento espacial e temporal do veículo monitorado para um determinado nível de confiabilidade. / In Brazil there is the prospect of growth in the volume of data to be processed by the tracking service providers due to the natural increase of the use of tracking systems and also to meet the Resolution 330 of 2009 and Resolution 135 of 01.30.2013 of the National Traffic Council (CONTRAN), due to this growth the need of incorporation of analytical tools in systems management tracking and monitoring of vehicles and risk management are created, to increase their efficiency and meet market growth. This study objective is to propose a methodology to characterize the moving vehicle behavior, in order to assist the process of decision making in management and vehicle tagging. The vehicle handling behavior will be characterized by generating an analytical model of the vehicle movement, collecting bygone data of spatial position and time. This model will consist of a motion model taking into account that the spatial and temporal aspects of behavior are taken independently. The behavior characterization generates reports able to identify the spatial and temporal behavior of the monitored vehicle for a given level of reliability.
|
3 |
Modelagem do comportamento espaço-temporal de veículo rastreado. / Modelling the space-temporal behavior of tracked vehicle.Eduardo Jun Shinohara 08 October 2013 (has links)
No Brasil existe a perspectiva de crescimento expressivo do volume de dados a ser processado pelas prestadoras de serviços de rastreamento em decorrência do aumento natural do uso de sistemas de rastreamento e também para atender a Resolução 330 de 2009 e Deliberação 135 de 30/01/2013 do Conselho Nacional de Trânsito (CONTRAN). Este crescimento gera a necessidade da incorporação de ferramentas analíticas nos sistemas de gerenciamento do rastreamento e monitoramento de veículos e na gestão de risco, para aumentar a sua eficiência e atender o crescimento do mercado. O objetivo desta dissertação é de propor uma metodologia que permita caracterizar o comportamento de movimentação de um veículo, com a finalidade de auxiliar o processo de tomada de decisão no gerenciamento e monitoramento de veículos. A caracterização do comportamento de movimentação do veículo foi feita pela geração de um modelo analítico do comportamento de movimentação, coletando os dados pretéritos da posição espacial e temporal. Este modelo baseia-se na movimentação e considera os aspectos comportamentais espaciais e temporais de forma independente. A caracterização do comportamento gera informações para identificar o comportamento espacial e temporal do veículo monitorado para um determinado nível de confiabilidade. / In Brazil there is the prospect of growth in the volume of data to be processed by the tracking service providers due to the natural increase of the use of tracking systems and also to meet the Resolution 330 of 2009 and Resolution 135 of 01.30.2013 of the National Traffic Council (CONTRAN), due to this growth the need of incorporation of analytical tools in systems management tracking and monitoring of vehicles and risk management are created, to increase their efficiency and meet market growth. This study objective is to propose a methodology to characterize the moving vehicle behavior, in order to assist the process of decision making in management and vehicle tagging. The vehicle handling behavior will be characterized by generating an analytical model of the vehicle movement, collecting bygone data of spatial position and time. This model will consist of a motion model taking into account that the spatial and temporal aspects of behavior are taken independently. The behavior characterization generates reports able to identify the spatial and temporal behavior of the monitored vehicle for a given level of reliability.
|
4 |
Economic fatigue damage monitoring for vehicle fleets using the scattering transformHeindel, Leonhard, Wendrock, Fabian, Hantschke, Peter, Kästner, Markus 10 January 2025 (has links)
Vehicle monitoring is an important prequisite for predictive maintenance applications. Virtual sensors can be deployed to establish relationships between fatigue related quantities of interest and readily available measurement data, which reduces the costs of monitoring for vehicle fleets. This work describes a data-driven virtual sensing approach using the scattering transform and principal component analysis. These data transformations are used to obtain a reduced representation of acceleration data, which is suitable for the identification of fatigue critical events during vehicle operation. Results of a previous study using an eBike demonstrator are summarized and the methodology is applied to experimental data of a sensor equipped light rail vehicle. In both applications, fictitious fatigue damage contributions are estimated accurately and physical interpretations of the reduced representation are found.
|
Page generated in 0.0636 seconds