• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 50
  • 49
  • 28
  • 26
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 545
  • 418
  • 403
  • 168
  • 129
  • 124
  • 119
  • 99
  • 92
  • 82
  • 82
  • 76
  • 50
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Measurements of Scalar Convection Velocity in Heated and Unheated High-Speed Jets

Shea, Sean Patrick 14 November 2018 (has links)
Jet noise has been a growing concern in recent years due to the costs associated with hearing loss of United States service members. Jet noise is also becoming more of a concern due to the rise of civilian complaints regarding the noise of jets near civilian and military air stations. One source of noise generation is from packets of air called eddies, which move with a convection velocity Uc. The current work seeks to expand upon the understanding of jet noise by collecting data using Time-resolved Doppler global velocimetry (TR-DGV) from regions of the jet known to produce high levels of acoustic radiation. Past experiments in studying convection velocity are reviewed based on the technique for obtaining the velocities. To add to these experiments, the current work analyzes data obtained using TR-DGV applied to a perfectly expanded Mach 1.65 flow with total temperature ratio (TTR) equal to 1. Additional measurements were obtained on a Mach 1.5 nozzle operated at a slightly over expanded condition and at TTR = 2. The cold jet flow is compared to the past experiments on unheated jets and demonstrates good agreement with respect to normalized convection velocities based on the jet exit speed. The data is then compared to past experiments conducted on the same nozzle at heated conditions. Shadowgraph imaging is used as a qualitative tool to locate shock cells within the jet plume. TR-DGV data from near the lipline (r = 0.5D) is axially aligned with the shadowgraph images to demonstrate that the shock structure within the potential core causes detectable variations in the scalar convective velocity. Additionally, it is shown that in the heated and unheated Mach 1.65 jet and the over expanded heated Mach 1.48 jet that the convection velocity does increase beyond the potential core. The Mach 1.48 jet is also compared to mean velocities obtained using Particle Image Velocimetry and found that the convective and mean velocities were only similar in some regions of the jet. A discussion is provided on suggestions of future work on where to obtain data within the jet plume and how to collect the data using current capabilities. Suggestions are also provided for improving data quality in future experiments, as well as ideas for future investigations into convection velocity along the length of the jet plume using TR-DGV. / Master of Science / Jet noise has been a growing concern in recent year due to the costs associated with hearing loss of United States service members. Additionally, many civilians complain about the noise of aircraft flying both out of military facilities and commercial airports. One source of noise generation is from packets of air called eddies which move with a convection velocity. Researchers have identified that by affecting the convection velocities of these eddies, there is a larger benefit than other traditional methods such as engine chevrons. The current work summarizes techniques used to investigate convective velocity as well as to provide evidence for other unconfirmed theories. This study focuses on using a laser-based technique to obtain data within the flow of an unheated supersonic jet. An unheated jet is studied to allow for easy comparison to other experiments that have used different diagnostic techniques. Additionally, this case is studied to complete a set of experiments that were previously conducted on the same nozzle so that there is a true base-line or “control” case for future work. Later in this paper, analysis will be done to show how shocks within the jet affect the convective velocity. A combination of both quantitative and qualitative efforts are performed to accomplish this. Additionally, it will be shown that after the potential core of the jet breaks down, there is an increase in the local convective velocity in this region immediately after the potential core. Finally, a brief summary will be given and suggestions for future work will be presented.
292

Flying snakes: Aerodynamics of body cross-sectional shape

Holden, Daniel Patrick 26 May 2011 (has links)
Chrysopelea paradisi, also known as the flying snake, possesses one of the most unique forms of aerial locomotion found in nature, using its entire body as a dynamic lifting surface without the use of wings or membranes. Unlike other airborne creatures, this species lacks appendages to aid in controlling its flight trajectory and producing lift. The snake exhibits exception gliding and maneuvering capabilities compared with other species of gliders despite this lack of appendages. While gliding, C. paradisi morphs its body by expanding its ribs, essentially doubling its width and utilizing its entire length as a reconfigurable wing. Its cross-sectional shape transforms into a thick, airfoil shape with a concave ventral surface, outwards protruding lips at the leading and trailing edges, a somewhat triangular dorsal surface with a round apex, and fore-aft symmetry. This study investigated the aerodynamic performance of this unique shape by simulating a single, static segment of the snake's body over a wide range of Reynolds numbers (3,000 to 15,000) and angles of attack (-10 to 60o) to simulate the full range of the snake's flight kinematics. This is the first study on an anatomically accurate snake model, and few aerodynamic studies have been performed in this low Reynolds number regime. Load cell measurements and time-resolved digital particle image velocimetry (TRDPIV) were performed on a 2D anatomically accurate model to determine the lift and drag coefficients, wake dynamics, and vortex shedding characteristics. This geometry produced a maximum lift coefficient of 1.9 and maximum lift to drag ratio of 2.7, and maintained increases in lift up to 35o. Overall, this geometry demonstrated robust aerodynamic behavior by maintain significant lift production and near maximum lift to drag ratios over a wide range of test parameters. These aerodynamic characteristics may enable the flying snake to glide at steep angles and over a wide range of angles of attack, often encountered in gliding trajectories. This geometry also produced larger maximum lift coefficients than many other bluff bodies and airfoils in this low Reynolds number regime. This thesis is organized as follows. The first section contains a broad introduction on gliding flight and C. paradisi's unique mode of gliding. The following section is a manuscript that will be submitted to a journal and contains the experimental analysis on the snake's cross-sectional shape. Several appendices attached to the end of this thesis contain additional analysis and work performed throughout the duration of this project and unique Matlab algorithms developed during this research. / Master of Science
293

Near wall high resolution particle image velocimetry and data reconstruction for high speed flows

Raben, Samuel 06 June 2008 (has links)
The aim of this work was to understand the physical requirements as well as to develop methodology required to employ Time Resolved Digital Particle Image Velocimetry (TRDPIV) for measuring high speed, high magnification, near wall flow fields. Previous attempts to perform measurements such as this have been unsuccessful because of both limitations in equipment as well as proper methodology for processing of the data. This work addresses those issues and successfully demonstrates a test inside of a transonic turbine cascade as well as a high speed high magnification wall jet. From previous studies it was established that flow tracer delivery is not a trivial task in a high speed high back pressure environment. Any TRDPIV measurement requires uniform spatial seeding density, but time-resolved measurements require uniform temporal seeding density as well. To this end, a high pressure particle generator was developed. This advancement enhanced current capability beyond what was previously attainable. Unfortunately, this was not sufficient to resolve the issue of seeding all together, and an advanced data reconstruction methodology was developed to reconstruct areas of the flow field that where lost do to inhomogeneous seeding. This reconstruction methodology, based on Proper Orthogonal Decomposition (POD), has been shown to produce errors in corrected velocities below tradition spatial techniques alone. The combination of both particle generator and reconstruction methodology was instrumental for successfully acquiring TRDPIV measurements in a high speed high pressure environment such as a transonic wind tunnel facility. This work also investigates the development of a turbulent wall jet. This experiment helped in demonstrating the capability of taking high speed high magnification TRDPIV measurements. This experiment was very unique in that it is one of only a few experiments that studied the developing region of these jets. The Reynolds number ranged for this experiment from 150 – 10,000 which corresponded to velocities of 1 - 80 m/s. The results from this experiment showed good agreement with currently published time averaged data. Using scaling laws for fully developed jets a new scaling law was found for the developing region of the jet that could be applied to all Reynolds numbers in this study. A temporal investigation was also carried out using the temporal coefficients from POD. A vortex identification scheme was also applied to all of the Reynolds numbers showing clear trends as Reynolds number increased. / Master of Science
294

Experimental Investigation of the Effects of a Passing Shock on Compressor Stator Flow

Langford, Matthew David 07 May 2003 (has links)
A stator cascade was developed to simulate the flow conditions within a close-stage-spacing transonic axial compressor. Experiments were conducted in a linear transonic blowdown cascade wind tunnel with an inlet Mach number of 0.65. The bow shock from the downstream rotor was simulated by a single moving normal shock generated with a shock tube. First, steady pressure data were gathered to ensure that the stator cascade operated properly without the presence of the shock. Next, the effects of the passing shock on the stator flow field were investigated using shadowgraph photography and Digital Particle Image Velocimetry (DPIV). Measurements were taken for three different shock strengths. In every case studied, a vortex formed near the stator trailing edge as the shock impacted the blade. The size of this vortex was shown to be directly related to the shock strength, and the vortex remained present in the trailing edge flow field throughout the cycle duration. Analysis of the DPIV data showed that the vortex acts as a flow blockage, with the extent of this blockage ranging from 2.9% of the passage for the weakest shock, to 14.3% of the passage for the strongest shock. The vortex was also shown to cause flow deviation up to 75° for the case with the strongest shock. Further analysis estimated that the total pressure losses due to shock-induced vorticity ranged from 46% to 113% of the steady wake losses. Finally, the total pressure loss purely due to the upstream-propagating normal shock was estimated to be roughly 0.22%. / Master of Science
295

Experimental observation of turbulent structure at region surrounding the mid-channel braid bar

Khan, M.A., Sharma, N., Pu, Jaan H., Pandey, M., Azamathulla, H. 08 April 2021 (has links)
No / River morphological processes are among the most complex and least understood phenomenon in nature. Recent research indicates that the braiding of marine waterways of the estuary zone occurs at an aspect ratio similar to the alluvial braided river. The instability of complex sporadic fluvial processes at river-sea interface is responsible for bar formation in alluvial as well as in marine waterbodies Due to the lack of knowledge of flow characteristics around bar, the flow structure around the sand bar is analyzed. The bursting events play the crucial role in understanding the fluvial characteristics in the vicinity of submerged structure. The study of bursting events around the mid-channel bar is only done by the present author. The effect of submergence ratio on the turbulence behavior in the proximity of bar is analyzed in this study. The flow turbulence generated by the mid-channel bar is also analyzed in detail. The extreme turbulent burst is segregated from low intensity turbulent events by using the hole size concept. The effect of hole size on the parameter Dominance Function is analysed which is not yet studied by any researcher for mid-channel bar. The Momentum Dominance Function (MDF) parameter increases with increase in the Hole Size. This indicates that the magnitude of upward flux increases with increase in the hole size. The effect of bar height on the turbulent burst which is not yet studied by any researchers is analyzed in the present research. The joint probability distribution of bursting events is modeled using the Gram-Charlier bivariate joint probability function. The joint probability distribution gives the details of probabilistic structure of flow in the vicinity of bar. The effect of bar is predominant only in the lower flow layer. The joint probability distribution graph becomes more eccentric toward the dominant quadrants with increase in the submergence ratio. This indicates that the probability of dominant events further increases with increase in the submergence ratio.
296

Fluid Dynamics of Inlet Swirl Distortions for Turbofan Engine Research

Guimaraes Bucalo, Tamara 25 April 2018 (has links)
Significant effort in the current technological development of aircraft is aimed at improving engine efficiency, while reducing fuel burn, emissions, and noise levels. One way to achieve these is to better integrate airframe and propulsion system. Tighter integration, however, may also cause adverse effects to the flow entering the engines, such as total pressure, total temperature, and swirl distortions. Swirl distortions are angular non-uniformities in the flow that may alter the functioning of specific components of the turbomachinery systems. To investigate the physics involved in the ingestion of swirl, pre-determined swirl distortion profiles were generated through the StreamVane method in a low-speed wind tunnel and in a full-scale turbofan research engine. Stereoscopic particle image velocimetry (PIV) was used to collect three-component velocity fields at discrete planes downstream of the generation of the distortions with two main objectives in mind: identifying the physics behind the axial development of the distorted flow; and describing the generation of the distortion by the StreamVane and its impact to the flow as a distortion generating device. Analyses of the mean velocity, velocity gradients, and Reynolds stress tensor components in these flows provided significant insight into the driving physics. Comparisons between small-scale and full-scale results showed that swirl distortions are Mach number independent in the subsonic regime. Reynolds number independence was also verified for the studied cases. The mean secondary flow and flow angle profiles demonstrated that the axial development of swirl distortions is highly driven by two-dimensional vortex dynamics, when the flow is isolated from fan effects. As the engine fan is approached, the vortices are axially stretched and stabilized by the acceleration of the flow. The flow is highly turbulent immediately downstream of the StreamVane due to the presence of the device, but that vane-induced turbulence mixes with axial distance, so that the device effects are attenuated for distances greater than a diameter downstream, which is further confirmed by the turbulent length scales of the flow. These results provide valuable insight into the generation and development of swirl distortion for ground-testing environments, and establishes PIV as a robust tool for engine inlet investigations. / Ph. D. / In order to improve performance of the next generation of aircraft, engineers are developing research that aims at reducing fuel consumption, improving the efficiency of engines, and also decreasing the levels of produced noise. There are several ways to achieve these goals, but significant effort has been focused on modifying the position of the engines on the aircraft to improve the properties of the airflow entering them. Computational simulations and small-scale tests have shown that this approach can be beneficial, while also showing that adverse effects to the properties of the air can be caused, affecting the behavior of the propulsion system. This current work makes use of a technique called StreamVane™ to reproduce those modified airflows in laboratory testing environments in order to understand how that flow might behave in the inlet of an engine, and what effects it could cause. This helps scientists and engineers decide if those modifications to the engine would be worth the time and money investments to the aircraft even before a full-scale model of the aircraft is built. More specifically, this work is an experimental investigation of two different types of distortions to the inlet airflow that could be caused by the aforementioned novel aircraft configurations, or by existing ones that have not been fully described yet.
297

A Comprehensive Three-Dimensional Analysis of the Wake Dynamics in Complex Turning Vanes

Hayden, Andrew Phillip 20 December 2023 (has links)
A comprehensive computational and experimental analysis has been conducted to characterize the flow dynamics and periodic structures formed in the wake of complex turning vanes. The vane packs were designed by the StreamVane swirl distortion generator technology, a design system that can efficiently reproduce swirl distortion for compressor rig and full turbofan engine testing. StreamVanes consist of an array of turning vanes that commonly contain variations in turning angle along their span, a nonaxisymmetric profile about the centerline, and vane-to-vane intersections or junctions to accurately generate the desired distortion. In this study, vane packs are considered complex if they contain two out of three of these features, a combination seen in other turbomachinery components outside of StreamVane design. Similar to all stator vanes or rotor blades, StreamVane vane packs are constructed using a series of cross-sectional airfoil profiles with blunt trailing edges and finite thicknesses. This, in turn, introduces periodic vortex structures in the wake, commonly known as trailing edge vortex shedding. To fully understand how the dynamics and coherent wake formations within vortex shedding impact both the flow distortion and structural durability of StreamVanes, it is first necessary to characterize the corresponding wakes in three dimensions. The current study provides an in-depth analysis to predict and measure the trailing edge vortex development using high-fidelity computational fluid dynamics and stereoscopic time-resolved particle image velocimetry experiments. Two testcase StreamVane geometries were specifically designed with complex features to evaluate their influence on the dynamics and coherence of the respective vane wakes. Fully three-dimensional, unsteady computational fluid dynamics simulations were performed using a Reynolds-Averaged Navier-Stokes solver coupled with a standard two-equation turbulence model and a hybrid, scale-resolving turbulence model. Both models predicted large-scale wake frequencies within 1—14% of experiment, with a mean difference of less than 3.2%. These comparisons indicated that lower fidelity simulations were capable of accurately capturing such flows for complex vane packs. Additionally, structural and modal analyses were conducted using finite element models to determine the correlations between dominant structural modes and dominant wake (flow) modes. The simulations predicted that vortex shedding modes generally contained frequencies 300% larger than dominant structural modes, and therefore, vortex induced vibrations were unlikely to occur. Lastly, mode decomposition methods were applied to the experimental results to extract energy ratios and reveal dynamic content across high-order wake modes. The vortex shedding modes generated more than 80% of the total wake energy for both complex vane packs, and dynamic decomposition methods revealed unique structures within the vane junction wake. In all analyses, comparisons were made between different vane parameters, such as trailing edge thickness and turning angle, where it was found that trailing edge thickness was the dominant vortex shedding parameter. The motivation, methodology, and results of the following research is presented to better understand the wake interactions, computational predictive capabilities, and structural dynamics associated with vortex shedding from complex vane packs. Although the results directly relate to StreamVane distortion generator technology, the qualitative and quantitative comparisons between the selected methods, geometry parameters, and flow conditions can be extrapolated to modern turbomachinery components in general. Therefore, this dissertation aims to benefit distortion generator and turbomachinery designers by providing insight into the underlying physics and overall modeling techniques of the wake dynamics in highly three-dimensional, complex components. / Doctor of Philosophy / A comprehensive analysis has been completed to characterize the unsteady wake flow produced by complex turning vane systems in three dimensions. Turning vanes are a common component utilized in the field of fluid dynamics and aerospace propulsion to effectively turn and manipulate the working fluid to the desired condition. For propulsion applications, similar vanes can alleviate performance losses by improving the overall aerodynamics and mitigating flow distortions entering the compressor of a jet engine. Conversely, complex turning vanes can also be used to reproduce the distortion for engineers to evaluate jet engine components when subjected to nonuniform flow ingestion. The distinct geometry features that make these vanes complex are also present in other turbomachinery systems outside of distortion generation. In any case, the cross-sectional profiles of the turning vanes commonly contain blunt ends or trailing edges due to engineering limitations and/or restrictions. This geometric feature introduces periodic wake structures, known as vortex shedding, that can negatively effect the performance of the overall system. It is therefore a necessity to characterize both the dynamics and coherence of vortex shedding to fully understand the flow features in highly three-dimensional flows. In the presented research, this is achieved by applying computational simulations and experimental measurements to extract the corresponding wake dynamics of complex vane packs. The selected testcases where designed using the StreamVane technology, a mature system that generates tailored turning vanes to reproduce flow distortion in jet engine or fan rig ground-testing facilities. The fluid simulations captured the expected wake flow and largescale structures convecting downstream of the vane packs. A comparison between two different flow models and the experimental results revealed minimal quantitative differences in the large-scale dynamics, which gave insight into the model selection to predict such flows. Additional structural simulations were performed to estimate the forcing and response of the vane packs when subjected to the aerodynamic loading. The results showed vortex shedding was highly unlikely to cause large amplitude vibrations and structural failures. In all analyses, the primary results were correlated with common vane parameters and operating conditions to evaluate their impact on the wake dynamics. The motivation, methodology, and results of the following research is presented to better understand the wake interactions, computational predictive capabilities, and structural dynamics associated with vortex shedding from complex vane packs. Although the results directly relate to StreamVane distortion generator technology, the qualitative and quantitative comparisons between the selected methods, geometry parameters, and flow conditions can be extrapolated to modern turbomachinery components in general. Therefore, this dissertation aims to benefit distortion generator and turbomachinery designers by providing insight into the underlying physics and overall modeling techniques of the wake dynamics in highly three-dimensional, complex components.
298

Extension of Particle Image Velocimetry to Full-Scale Turbofan Engine Bypass Duct Flows

George, William Mallory 10 July 2017 (has links)
Fan system efficiency for modern aircraft engine design is increasing to the point that bypass duct geometry is becoming a significant contributor and could ultimately become a limiting factor. To investigate this, a number of methods are available to provide qualitative and quantitative analysis of the flow around the loss mechanisms present in the duct. Particle image velocimetry (PIV) is a strong candidate among experimental techniques to address this challenge. Its use has been documented in many other locations within the engine and it can provide high spatial resolution data over large fields of view. In this work it is shown that these characteristics allow the PIV user to reduce the spatial sampling error associated with sparsely spaced point measurements in a large measurement region with high order gradients and small spatial scale flow phenomena. A synthetic flow featuring such attributes was generated by computational fluid dynamics (CFD) and was sampled by a virtual PIV system and a virtual generic point measurement system. The PIV sampling technique estimated the average integrated velocity field about five times more accurately than the point measurement sampling due to the large errors that existed between each point measurement location. Despite its advantages, implementation of PIV can be a significant challenge, especially for internal measurement where optical access is limited. To reduce the time and cost associated with iterating through experiment designs, a software package was developed which incorporates basic optics principles and fundamental PIV relationships, and calculates experimental output parameters of interest such as camera field of view and the amount of scattered light which reaches the camera sensor. The program can be used to judge the likelihood of success of a proposed PIV experiment design by comparing the output parameters with those calculated from benchmark experiments. The primary experiment in this work focused on the Pratt and Whitney Canada JT15D-1 aft support strut wake structure in the bypass duct and was comprised of three parts: a simulated engine environment was created to provide a proof of concept of the PIV experiment design; the PIV experiment was repeated in the full scale engine at four fan speeds ranging from engine idle up to 80% of the maximum corrected fan speed; and, finally, a CFD simulation was performed with simplifying assumptions to provide insight and perspective into the formation of the wake structures observed in the PIV data. Both computational and experimental results illustrate a non-uniform wake structure downstream of the support strut and support the hypothesis that the junction of the strut and the engine core wall is creating a separate wake structure from that created by the strut main body. The PIV data also shows that the wake structure moves in the circumferential direction at higher fan speeds, possibly due to bulk swirl present in the engine or a pressure differential created by the support strut. The experiment highlights the advantages of using PIV, but also illustrates a number of the implementation challenges present, most notably, those associated with consistently providing a sufficient number of seeding particles in the measurement region. Also, the experiment is the first to the author's knowledge to document the use of PIV in a full scale turbofan engine bypass duct. / Master of Science
299

3D numerical modelling and laboratory study of flow field induced by a group of submerged vegetations

John, Chukwuemeka K., Pu, Jaan H., Guo, Yakun, Keating, M., Al-Qadami, E.H.H., Razi, M.A.M., Hanmaiahgari, P.R. 12 October 2024 (has links)
Yes / The three-dimensional (3D) numerical modelling in an open channel flow field of a group of submerged vegetations using computational fluid dynamics (CFD) platform of FLOW-3D HYDRO was performed in this study. A set of acoustic Doppler velocimetry (ADV) measurements have been conducted as benchmark to validate the numerical model. A quantitative comparison was performed on several hydrodynamic variables that impacted the vegetated open channel flow, such as flow depth, streamwise water velocity, turbulent intensity, and Reynolds shear stress. In the numerical analysis, the flow turbulence was treated using the RANS approach (within RNG k-ε); while the Volume Of Fluid (VOF) method was used to track the air-water interface. Structured meshes with hexahedral elements were used to discretize the channel geometry. In the findings, the numerical model reasonably reproduced the flow field and presented corresponding agreement with the experimental turbulent structures. This study showed that the differences in results between various analyses were all less than 10% and concludes that the presented numerical approach can be utilised as an efficient tool for simulations of the flow field within a vegetation patch (i.e. by using the simplified RANS approach).
300

On sampling bias in multiphase flows: Particle image velocimetry in bubbly flows

Ziegenhein, Thomas, Lucas, Dirk 19 April 2016 (has links) (PDF)
Measuring the liquid velocity and turbulence parameters in multiphase flows is a challenging task. In general, measurements based on optical methods are hindered by the presence of the gas phase. In the present work, it is shown that this leads to a sampling bias. Here, particle image velocimetry (PIV) is used to measure the liquid velocity and turbulence in a bubble column for different gas volume flow rates. As a result, passing bubbles lead to a significant sampling bias, which is evaluated by the mean liquid velocity and Reynolds stress tensor components. To overcome the sampling bias a window averaging procedure that waits a time depending on the locally distributed velocity information (hold processor) is derived. The procedure is demonstrated for an analytical test function. The PIV results obtained with the hold processor are reasonable for all values. By using the new procedure, reliable liquid velocity measurements in bubbly flows, which are vitally needed for CFD validation and modeling, are possible. In addition, the findings are general and can be applied to other flow situations and measuring techniques.

Page generated in 0.0498 seconds