• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation topologique d'écoulements turbulents et application à la ventilation des bâtiments / Topology optimization of turbulents flows and application to building's ventilation

Rivière, Garry 01 March 2017 (has links)
La ventilation joue un rôle important dans le confort thermique des occupants d'un bâtiment en climat chaud, en contribuant au rafraîchissement de l'air qui les entoure. Qu'elle soit mécanique ou naturelle, la ventilation doit être maîtrisée pour ne pas gêner l'occupant et respecter des normes ou réglementations en vigueur. Ces gênes sont liées à des vitesses d'air ou à une intensité turbulente trop élevée. Les concepteurs doivent alors faire appel à l'outil numérique pour une prédiction fine des écoulements d'air. La simulation de configurations à l'échelle du bâtiment peut se faire par une approche moyennée des équations de Navier-Stokes en complément d'un modèle de turbulence. Ces simulations sont utilisées par les chercheurs comme des outils de dimensionnement, ou encore, d'optimisation des composants de ventilation. De plus, la forme des bouches de ventilation peut contribuer passivement à l'optimisation de certains phénomènes aérauliques. L'amélioration de ces formes peut ainsi se faire par l'utilisation de méthodes d'optimisation de forme. L'optimisation topologique par ajout de matière permet de trouver des formes pour optimiser des fonctionnelles objectifs définies sur le fluide ou sur ses frontières. C'est sur cette méthode que ces travaux de thèse se concentrent pour proposer un outil de contrôle des écoulements d'air dans le bâtiment par la recherche de formes optimales de bouches de ventilation. Ces travaux de thèse proposent une contribution à l'optimisation topologique d'écoulements turbulents dans le bâtiment. Dans un premier temps, la méthode par ajout de matière est appliquée pour minimiser les pertes de charge dans une conduite d'aération en forme de Té. Le modèle adjoint développé est soumis à l'hypothèse de turbulence gelée. Dans un second temps le modèle adjoint complet est proposé pour le modèle de turbulence standard k-epsilon pour la réduction des pertes de charge d'une part et de l'intensité turbulente d'autre part. Enfin, ces outils sont appliqués à l'optimisation de forme de bouches de ventilation. Les résultats montrent ainsi un bon potentiel de l'optimisation topologique par ajout de matière pour l'orientation des écoulements d'air mais ne garantissent pas la maîtrise des vitesses d'air dans la pièce. De plus, la minimisation de l'intensité turbulente grâce à l'approche complète développée a contribué à la réduction du taux d'insatisfaction lié à une intensité turbulente trop élevée dans la pièce. / Ventilation plays a key role in thermal comfort of building's occupants in hot climates by refreshing air surrounding them. Mechanical or natural ventilation must be controlled for two reasons: do not disturb the bulding's occupants and comply with the regulations in force. Discomfort is linked to too high air velocities or turbulent intensity. Designers can use the numerical tools for a finer prediction of airflow. The simulation of configurations at the building scale can be done using averaged Navier-Stokes equations approach in addition to a turbulence model. These simulations are used by researchers as sizing tools or for the optimization of ventilation components. In addition, the shape of the ventilation nozzle can passively contributes to the optimization of some aeraulics phenomena. The improvement of these ventilation components can be achieved by the use of shape optimization methods. Topological optimization by addition of material makes it possible for the optimization of cost functions defined on the fluid or on its boundaries. The main objective of this manuscript is to propose a tool to control airflows in building by the search for optimal shape of ventilation nozzle. This work proposes a contribution to the topological optimization of turbulent flows in buildings. In a first step, topological optimization by adding material is applied to minimize pressure losses in a T-shaped pipe. The developed model is subjected to the hypothesis of the frozen turbulence. In a second step, the complete adjoint model is proposed for the standard turbulence model k-epsilon for the minimization of the total pressure losses on the one hand and the turbulent intensity on the other hand. Finally, these tools are applied to the shape optimization of ventilation nozzle. The results of topological optimization by adding virtual material show good potential for the orientation of the airflows but does not guarantee the control of the air velocities in the room. Moreover, the minimization of turbulent intensity through the complete approach contributed to the reduction of the dissatisfaction rate due to excessive turbulent intensity in the room.
2

Full-scale experimental characterization of a non-isothermal realistic air jet for building ventilation : Local interaction effects, moisture transport and condensation prediction / Caractérisation expérimentale d'un jet d'air anisotherme réaliste pour la ventilation du bâtiment : L'interaction du local, le transport d'humidité et la condensation

Nguyen, Chi Kien 25 October 2018 (has links)
La compréhension de la distribution de l'air intérieur accompagné du transfert couplé "chaleur-air-humidité" est essentielle à la conception des systèmes de ventilation des bâtiments. Parmi les méthodes de distribution d'air intérieur, la ventilation par mélange est l'une des plus couramment utilisées, dont la performance est déterminée par celle du jet d'air injecté. Au cours des dernières décennies, bien que de nombreuses recherches aient été menées sur les études des jets d'air, la majorité de ces études se sont concentrées sur une disposition symétrique des bouches de soufflage et d’extraction par rapport à la géométrie du local. En outre, les études traitant du transfert couplé "chaleur-air-humidité", qui inclut le phénomène de condensation sur la surface interne du local, sont encore limités dans la littérature. Ainsi, ce travail se concentre sur la problématique suivante : Quel est le comportement d'un jet d'air réaliste sous des effets d'interaction et comment caractériser de tels jets d'air ? Dans des conditions d'intérieur réalistes favorisant la condensation sur une surface froide, serait-il possible de quantifier le débit massique de condensation ? Les deux études sont expérimentées dans la cellule d’essais MINIBAT à l’échelle 1. La première partie consiste à caractériser un jet d'air turbulent au plafond dans une configuration d’écoulement intérieur réaliste. Les résultats expérimentaux montrent les effets d'interaction visibles des éléments architecturaux de la pièce sur le comportement du jet d'air tels que la déviation de la trajectoire du jet ainsi que la déformation des profils du jet. Les principales caractéristiques du jet, telles que le taux d’expansion, la décroissance de vitesse et de température, sont quantifiées. Une méthode graphique basée sur un indicateur de déformation est proposée pour quantifier la déformation des profils transversaux du jet.La deuxième partie de ce travail traite le phénomène de condensation sur une surface vitrée en reproduisant les conditions hivernales dans la cellule d’essais. L’apparition de la condensation et son mécanisme de croissance sont observés à l'aide d'une technique de macrophotographie. Le post-traitement de l'image permet d'estimer le débit de condensation. Les comparaisons entre les résultats expérimentaux et théoriques montrent un certain accord, ce qui pourrait valider la faisabilité des techniques d'imagerie dans les études de condensation à l’échelle 1. Des données expérimentales détaillées accompagnées de conditions aux limites bien connues issues de ce travail pourraient servir de test de benchmark pour la validation des modèles CFD, en particulier pour les configurations d’écoulement asymétrique, avec la présence de la condensation. / Understanding room air distribution with coupled heat-air-moisture transport is essential to the design of building ventilation systems. In the past decades, although numerous research have been undertaken on air jet studies, there are still some issues that deserve a consideration. In fact, the majority of these studies focused on a symmetric arrangement of supply and exhaust air outlets with respect the room geometry. Besides, studies dealing with room coupled heat-air-moisture transport, which includes the condensation phenomenon on the room inner surface, are generally lacking in the literature. Hence, this work focuses on the following problematic: What is the behavior of a realistic air jet under interaction effects and how to characterize such air jets? In realistic indoor conditions promoting condensation on cold surface, would we be able to quantify the condensate mass flow rate? The two studies are experimentally investigated in the full-scale MINIBAT controlled test cell. The first part consists in characterizing a ceiling turbulent air jet in a realistic indoor airflow configuration. The experimental results show visible interaction effects of the room architectural elements on the air jet behavior: they have deviated the jet trajectory as well as deformed the jet cross-sectional shape. The jet main characteristics such as the spread rate, the velocity and temperature decay are quantified. A graphical-based method is proposed to quantify the jet shape deformation using a so-called deformation indicator. The second part of this work treats the phenomenon of moisture condensation on a glazing surface by reproducing a winter condition within the test cell. The condensation appearance and its growth mechanism are observed using a macro-photography technique. The image post-processing enabled to estimate the condensation rate. Comparisons between experimental and theoretical results show some agreement, which could validate the feasibility of imaging techniques in full-scale condensation studies.Detailed experimental data accompanied by well-known boundary conditions from this work could serve as a benchmark test for CFD models validation, in particular for asymmetric airflow configurations, with the presence of the condensation phenomenon.

Page generated in 0.1447 seconds