• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turbulence modelling applied to the atmospheric boundary layer

Lazeroms, Werner January 2015 (has links)
Turbulent flows affected by buoyancy lie at the basis of many applications, both within engineering and the atmospheric sciences. A prominent example of such an application is the atmospheric boundary layer, the lowest layer of the atmosphere, in which many physical processes are heavily influenced by both stably stratified and convective turbulent transport. Modelling these turbulent flows correctly, especially in the presence of stable stratification, has proven to be a great challenge and forms an important problem in the context of climate models. In this thesis, we address this issue considering an advanced class of turbulence models, the so-called explicit algebraic models.In the presence of buoyancy forces, a mutual coupling between the Reynolds stresses and the turbulent heat flux exists, which makes it difficult to derive a fully explicit turbulence model. A method to overcome this problem is presented based on earlier studies for cases without buoyancy. Fully explicit and robust models are derived for turbulence in two-dimensional mean flows with buoyancy and shown to give good predictions compared with various data from direct numerical simulations (DNS), most notably in the case of stably stratified turbulent channel flow. Special attention is given to the problem of determining the production-to-dissipation ratio of turbulent kinetic energy, for which the exact equation cannot be solved analytically. A robust approximative method is presented to calculate this quantity, which is important for obtaining a consistent formulation of the model.The turbulence model derived in this way is applied to the atmospheric boundary layer in the form of two idealized test cases. First, we consider a purely stably stratified boundary layer in the context of the well-known GABLS1 study. The model is shown to give good predictions in this case compared to data from large-eddy simulation (LES). The second test case represents a full diurnal cycle containing both stable stratification and convective motions. In this case, the current model yields interesting dynamical features that cannot be captured by simpler models. These results are meant as a first step towards a more thorough investigation of the pros and cons of explicit algebraic models in the context of the atmospheric boundary layer, for which additional LES data are required. / <p>QC 20150522</p>
2

DES modelování turbulentního proudění / DES modelling of the turbulent flow

Benešová, Stanislava January 2014 (has links)
This thesis deals with the study of hybrid RANS/LES methods for modeling of turbulent flow with a focus on the DES method and its modifications. The theoretical part focuses on the description of turbulent flow and classical methods for its modeling. The following describes the hybrid RANS/LES methods, their principles and categories. Finally, the DES method is described in detail together with its improvement in form of DDES and IDDES methods. The practical part is devoted to the testing of DES and DDES on benchmark problems. We describe here used software OpenFOAM and numerical methods used to discretize the equations. One part is devoted to grid generation. The DES and the DDES methods are tested on two benchmarks: flat plate with zero pressure gradient and backward facing step. The simulaton results are compared with experimental data, with a focus on good modeling of the velocity profile near wall, turbulent viscosity and skin friction coefficient. Powered by TCPDF (www.tcpdf.org)
3

Prévision des flux de chaleur turbulents et pariétaux par des simulations instationnaires pour des écoulements turbulents chauffés / Prediction of wall and turbulent heat fluxes by unsteady simulations in heated-turbulent flows

Didorally, Sheddia 06 May 2014 (has links)
Cette thèse s’inscrit dans le cadre de l’amélioration des prévisions aérothermiques qui suscite l’intérêt croissant des industriels aéronautiques. Elle consiste à évaluer l’apport des méthodes URANS avancées de type SAS dans la prévision des flux de chaleur turbulents et pariétaux pour des écoulements turbulents chauffés. Elle vise aussi à situer ces approches par rapports aux modèles URANS classiques de type DRSM et hybrides RANS/LES comme la ZDES. Une extension de l’approche SAS à un modèle DRSM a d’abord été proposé afin d’obtenir une meilleure restitution des tensions de Reynolds résolues et modélisées. Ce modale SAS-DRSM a été implanté dans le code elsA de l’ONERA. Nous avons ensuite évalué les approches SAS disponibles avec ce code sur la prévention d’écoulements aérothermiques rencontrés sur avion dans un compartiment de moteur. Ces études ont montré que les approches SAS améliorent la représentation des écoulements par rapport aux modèles URANS classiques. Elles aboutissent à des écoulements fortement tridimensionnels avec de nombreuses structures turbulentes. Ces structures induisent un mélange turbulent accru et donc une meilleure prévision du flux de chaleur pariétal. De plus, nos travaux ont situé les approches de type SAS comme des méthodes plus précises que les méthodes URANS classiques sans augmentation importante du coût de calcul. Les modèles SAS ne résolvent pas les plus petites structures caractéristiques du mouvement turbulent par rapport à la ZDES qui montre des prévisions supérieures. Le modèle SAS-RDSM offre néanmoins la meilleur alternative de type SAS. Enfin, l’étude du flux de chaleur turbulent semble retrouver le fait que l’hypothèse classique de nombre de Prandtl turbulent constat n’est pas valable dans toutes les zones de l’écoulement. / The improvement of aerothermal predictions is a major concern for aeronautic manufacturers. In line with this issue, SAS approaches are assessed on the prediction of wall and turbulent heat fluxes for heated-turbulent flows. This study also aims at evaluating these advanced URANS methods in regard to DRSM models and hybrid RANS/LES approaches as ZDES. Firstly, we proposed to combine the SAS approach and a DRSM model in order to better reproduce both resolved and modelled Reynolds stresses. This new model, called SAS-DRSM, was implemented in ONERA Navier-Strokes code elsA. Unsteady simulations of two heated turbulent flows encountered in an aircraft engine compartment were then performed to evaluate all the SAS models available in the code. These numerical studies demonstrated that SAS approaches improve prediction of the flows compared to classical URANS models. They lead to full 3D flows with many turbulent structures. These structures favour turbulent mixing and thus induce a better prediction of the wall heat fluxes. Moreover, the numerical simulations showed that SAS methods are more accurate than classical URANS models without increasing significantly calculation costs. SAS approaches are not able to resolve the smallest turbulent structures in relation to ZDES which provides better predictions. Finally, the investigation of the turbulent heat flux suggested that the constant turbulent Prendtl number assumption, that is characteristic of classical URANS models, may not be valid in some regions of the flow.
4

[en] PERFORMANCE EVALUATION OF NONLINEAR EXPLICIT ALGEBRAIC REYNOLDS STRESS MODELS TO PREDICT CHANNEL FLOWS / [pt] AVALIAÇÃO DE DESEMPENHO DE MODELOS EXPLÍCITOS ALGÉBRICOS NÃO LINEARES DE TENSÕES DE REYNOLDS PARA PREVISÃO DE ESCOAMENTOS EM CANAIS

FELIPE WARWAR MURAD 01 November 2018 (has links)
[pt] Os modelos mais populares para solucionar escoamentos turbulentos são baseados no esquema RANS (Reynolds Average Navier Stokes) que necessita de fechamento para relacionar o tensor de tensões de Reynolds com os tensores médios cinemáticos. A solução clássica é a aproximação por Bussinesq que assume uma relação linear entre a parte deviatórica do Tensor de Reynolds e o tensor das taxas de deformação. Trabalhos anteriores mostraram que uma relação não linear entre o tensor das taxas de deformação pode melhorar a predição do modelo. No presente trabalho, primeiramente é realizada uma avaliação entre modelos lineares presentes na literatura seguido de uma análise de três modelos de ordem elevada que expandem a base tensorial para incluir tensores ortogonais. Duas adimensionalizações, uma com a energia cinética turbulenta e taxa de dissipação e outra com energia cinética turbulenta e intensidade do tensor de deformação, haviam sido propostas. As previsões dos modelos são comparados com dados DNS para um canal e para uma gama variada de número de Reynolds. Todos os modelos são implementados na plataforma aberta OpenFoam. Predições razoáveis para a componente cisalhante de todos os modelos foram obtidas quando comparadas com os dados DNS. Entretanto, modelos não lineares provaram superioridade na predição das outras componentes. Também foi observado que o modelo não linearmente dependente do tensor taxa de deformação e o tensor não persistencia das deformações foi o que melhor representou os campos providos por DNS. / [en] The most popular models to solve turbulent flows are based on the Reynolds Average Navier Stokes approach (RANS), which needs closure equations to relate the Reynolds stress tensor to the mean kinematic tensors. The classical approach is the Boussinesq approximation that assumes a linear relation between the deviatoric part of the Reynolds stress tensor, and the rate of strain tensor. Previous works have shown, that the non-linear dependence on the rate of strain tensor can improve the model predictions. At the present work, first an evaluation of linear models available in the literature is performed, followed by the analysis of three higher order methods, that expands the tensorial basis to include other objective orthogonal tensors. Two different nondimensionalization, one with the turbulent kinetic energy and dissipation rate and the other one with turbulent kinetic energy and the intensity of the rate of strain, had also been proposed for the models. The performance of the new models is assessed by comparing their numerical predictions to available channel flow and for a broad range of Reynolds Numbers. All models are implemented in the open source platform OpenFOAM. Reasonable predictions of the Reynolds shear component of all models were obtained when compared with the DNS data. However, the non-linear models proved superior in the prediction of the other components. It was also observed that the model which depends nonlinearly with the rate of strain and linearly with the non-persistence of strain was the one that best represented the DNS data field.
5

Optimisation topologique d'écoulements turbulents et application à la ventilation des bâtiments / Topology optimization of turbulents flows and application to building's ventilation

Rivière, Garry 01 March 2017 (has links)
La ventilation joue un rôle important dans le confort thermique des occupants d'un bâtiment en climat chaud, en contribuant au rafraîchissement de l'air qui les entoure. Qu'elle soit mécanique ou naturelle, la ventilation doit être maîtrisée pour ne pas gêner l'occupant et respecter des normes ou réglementations en vigueur. Ces gênes sont liées à des vitesses d'air ou à une intensité turbulente trop élevée. Les concepteurs doivent alors faire appel à l'outil numérique pour une prédiction fine des écoulements d'air. La simulation de configurations à l'échelle du bâtiment peut se faire par une approche moyennée des équations de Navier-Stokes en complément d'un modèle de turbulence. Ces simulations sont utilisées par les chercheurs comme des outils de dimensionnement, ou encore, d'optimisation des composants de ventilation. De plus, la forme des bouches de ventilation peut contribuer passivement à l'optimisation de certains phénomènes aérauliques. L'amélioration de ces formes peut ainsi se faire par l'utilisation de méthodes d'optimisation de forme. L'optimisation topologique par ajout de matière permet de trouver des formes pour optimiser des fonctionnelles objectifs définies sur le fluide ou sur ses frontières. C'est sur cette méthode que ces travaux de thèse se concentrent pour proposer un outil de contrôle des écoulements d'air dans le bâtiment par la recherche de formes optimales de bouches de ventilation. Ces travaux de thèse proposent une contribution à l'optimisation topologique d'écoulements turbulents dans le bâtiment. Dans un premier temps, la méthode par ajout de matière est appliquée pour minimiser les pertes de charge dans une conduite d'aération en forme de Té. Le modèle adjoint développé est soumis à l'hypothèse de turbulence gelée. Dans un second temps le modèle adjoint complet est proposé pour le modèle de turbulence standard k-epsilon pour la réduction des pertes de charge d'une part et de l'intensité turbulente d'autre part. Enfin, ces outils sont appliqués à l'optimisation de forme de bouches de ventilation. Les résultats montrent ainsi un bon potentiel de l'optimisation topologique par ajout de matière pour l'orientation des écoulements d'air mais ne garantissent pas la maîtrise des vitesses d'air dans la pièce. De plus, la minimisation de l'intensité turbulente grâce à l'approche complète développée a contribué à la réduction du taux d'insatisfaction lié à une intensité turbulente trop élevée dans la pièce. / Ventilation plays a key role in thermal comfort of building's occupants in hot climates by refreshing air surrounding them. Mechanical or natural ventilation must be controlled for two reasons: do not disturb the bulding's occupants and comply with the regulations in force. Discomfort is linked to too high air velocities or turbulent intensity. Designers can use the numerical tools for a finer prediction of airflow. The simulation of configurations at the building scale can be done using averaged Navier-Stokes equations approach in addition to a turbulence model. These simulations are used by researchers as sizing tools or for the optimization of ventilation components. In addition, the shape of the ventilation nozzle can passively contributes to the optimization of some aeraulics phenomena. The improvement of these ventilation components can be achieved by the use of shape optimization methods. Topological optimization by addition of material makes it possible for the optimization of cost functions defined on the fluid or on its boundaries. The main objective of this manuscript is to propose a tool to control airflows in building by the search for optimal shape of ventilation nozzle. This work proposes a contribution to the topological optimization of turbulent flows in buildings. In a first step, topological optimization by adding material is applied to minimize pressure losses in a T-shaped pipe. The developed model is subjected to the hypothesis of the frozen turbulence. In a second step, the complete adjoint model is proposed for the standard turbulence model k-epsilon for the minimization of the total pressure losses on the one hand and the turbulent intensity on the other hand. Finally, these tools are applied to the shape optimization of ventilation nozzle. The results of topological optimization by adding virtual material show good potential for the orientation of the airflows but does not guarantee the control of the air velocities in the room. Moreover, the minimization of turbulent intensity through the complete approach contributed to the reduction of the dissatisfaction rate due to excessive turbulent intensity in the room.
6

Modélisation et analyse des transferts dans les échangeurs à plaques et ailettes à pas décalés : intensification par optimisation géométrique et génération de vorticité / Modeling and analysis of transfer in offset strip fins heat exchangers : heat transfer intensification by geometry optimization and vorticity generation

Toubiana, Ephraïm 20 January 2015 (has links)
Ce mémoire de thèse traite de l’analyse, l’intensification et l’optimisation du transfert thermique convectif dans les échangeurs à plaques et ailettes à pas décalés utilisés notamment dans le domaine automobile comme refroidisseurs d’air de suralimentation. Deux approches complémentaires sont abordées dans cette étude : des simulations numériques visant à l’analyse fine locale des caractéristiques de l’écoulement et des mécanismes de transfert, et une modélisation de type nodale permettant une caractérisation globale des performances thermo-aérauliques. Sur la gamme de Reynolds considérée différentes modélisations de la turbulence sont mises en œuvre et comparées. Ainsi des simulations aux grandes échelles (LES) permettent de qualifier des simulations de type RANS classiquement utilisées jusque-là : de fortes différences tant au niveau structuration de l’écoulement qu’au niveau performances globales sont ainsi mises en évidence selon le régime d’écoulement considéré. La mise au point d’un modèle nodal est ensuite abordée dans le but de mener des optimisations de géométries d’échangeurs non-conventionnels à pas décalés. Les différents scénarii d’optimisation considérés montrent l’intérêt de cette approche autorisant l’évaluation d’un nombre élevé de configurations géométriques. Dans une dernière partie une nouvelle géométrie innovante permettant de générer des tourbillons longitudinaux sur ce type d’ailettes est proposée et étudiée. / This thesis deals with the analysis, intensification and optimization of convective heat transfer in offset strip fins (OSF) heat exchangers used, for example, in the automotive field as water-cooled charge air coolers. Two complementary approaches are carried out in this study: CFD simulations to perform local fine analysis of the flow characteristics and transfer mechanisms, and a nodal type modeling allowing calculation of global aerothermal performance. Over the range of Reynolds numbers considered, different turbulence modeling approaches are implemented and compared: Large Eddy Simulations (LES) and RANS simulations which are usually used. The qualification of the RANS models shows that strong differences, both in the flow structure and at the overall performance evaluation level, may beobserved, depending on the flow regime considered. Then the development of a nodal model is presented. It aims at carrying out rapid optimization of geometries of unconventional OSF heat exchangers. The various optimization scenarios considered show the interest of this approach allowing the evaluation of a large number of geometric configurations. In a last part, an innovative new geometry that generates longitudinal vortices on this type of fins is proposed and studied.

Page generated in 0.0479 seconds