• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation d'un écoulement de jet de rive par une méthode VOF

Mauriet, Sylvain 02 July 2009 (has links) (PDF)
Les processus dynamiques présents en zone de swash ont un impact significatif sur l'évolution des zones côtières. Une part importante du transport sédimentaire cross-shore se produit dans cette zone, plus particulièrement dans cette zone où se produisent le run-up et le run-down. La zone située au-delà de la ligne de rivage au repos est le plus souvent décrite par des modèles intégrés sur la verticale. La décroissance des vagues est bien reproduite, cependant l'étude du transport sédimentaire impose une paramétrisation du frottement sur le fond. Nous présentons les résultats de simulations RANS de la propagation d'un mascaret (obtenu par un "lâcher de barrage") sur une plage en pente et le run-up et le run-down ainsi générés. Les résultats numériques sont comparés aux résultats expérimentaux de Yeh et al. (1989). Les simulations ont été réalisées avec le code Navier-Stokes diphasique AQUILON. Deux méthodes de suivi d'interface VOF (VOF TVD ET VOF PLIC) sont implémentées. La viscosité turbulente est calculée par un modèle V2-F (Durbin, 1991). Une estimation des grandeurs turbulentes k et epsilon basée sur la théorie des ondes longues pour la propagation d'un ressaut hydraulique est présentée. Une modélisation VOF-PLIC & V2-F est appliquée pour reproduire les caractéristiques macroscopiques du lâcher de barrage, qui comme on pouvait s'y attendre dépendent peu de la turbulence. Nous étudions aussi l'impact des conditions initiales sur k et epsilon sur l'établissement de l'écoulement turbulent. Après ces validations vis-à-vis de la turbulence, des simulations du cas décrit par Yeh et al. (1989) sont menées pour optimiser le choix des paramètres de calcul. La théorie de Whitham (1958), prédit un effondrement du mascaret au niveau de la ligne de rivage au repos. La théorie de Shen and Meyer (1963) est toujours à l'heure actuelle le modèle de référence. Les résultats expérimentaux de Yeh et al. (1989) montrent clairement un phénomène différent. L'utilisation conjointe de la technique VOF-TVD et du modèle de turbulence V2-F semble apporter les meilleurs résultats par rapport aux expériences de Yeh et al. (1989). Une étude de la transition mascaret/lame de swash est proposée. Nos résultats montrent que la théorie de Whitham décrit de façon assez précise le mécanisme de d'effondrement du mascaret. Les résultats de nos simulations sont utilisés pour décrire la transition entre l'effondrement du mascaret et l'écoulement du run-up. L'analyse des processus de frottement dans le jet de rive met en évidence une forte dissymétrie entre le run-up et le run-down avec cisaillement plus faible lors du run-down
2

Prévision de la transition bypass à l’aide d’un modèle à énergie cinétique laminaire basé sur la dynamique des modes de Klebanoff / Development of a Klebanoff-mode-based kinetic energy model for bypass transition prediction

Jecker, Loïc 15 November 2018 (has links)
Le passage du régime laminaire au régime turbulent s’accompagne d’importantes modifications des propriétés physiques de l’écoulement. Une prévision précise du point du début de la transition laminaire/turbulent revêt donc une importance considérable dans de nombreux domaines pratiques. Lorsque l’intensité des perturbations extérieures est significative, c'est-à-dire dans le cas de couches limites se développant sur une paroi présentant des rugosités ou soumises à une forte turbulence résiduelle (sillage impactant), les mécanismes de formation et d’amplification des instabilités sont profondément modifiés. Ces perturbations sont les modes de Klebanoff (également appelés stries) qui s’amplifient et déclenchent la transition, qualifiée dans ce cas de Bypass. Ces stries sont très énergétiques, caractérisées par des fluctuations de vitesse très importantes (de l’ordre de 10% de la vitesse extérieure), alors que la couche limite conserve son caractère laminaire. La thèse proposée concerne la modélisation de ces stries via la résolution d’une équation de transport pour l’énergie cinétique dite laminaire. Dans un premier temps, le travail du candidat portera sur la modélisation des termes de production et de dissipation de l’énergie cinétique laminaire. Ceux-ci sont liés au processus de réceptivité de la couche limite vis-à-vis des perturbations extérieures et à la dynamique des modes de Klebanoff dans la zone laminaire. Pour ce faire, la thèse s’appuiera sur des études réalisées depuis plusieurs années au sein de l’unité ITAC sur la théorie des perturbations optimales ainsi que sur les travaux numériques et expérimentaux prévus dans le cadre d’un projet de recherche interne Onera. Classiquement cette équation de transport est couplée avec celles correspondant à l’énergie cinétique turbulente et à la dissipation, le mécanisme d’échange entre les énergies cinétiques laminaire et turbulente devra être soigneusement étudié : ce dernier pilote la transition vers la turbulence. Une attention particulière sera portée aux couches limites décollées et plus précisément à la prise en compte de la transition dans ces bulbes. Cette nouvelle modélisation innovante permettra l’amélioration d’une première approche pour le calcul de la transition bypass dans le solveur elsA, développé à l’Onera, et constituera une étape importante vers la mise en place de techniques de prévision de la transition pratiques et performantes. / This work aims to develop a new bypass-transition prediction model based on the Klebanoff modes dynamics. To represent these mode dynamics the Laminar Kinetic Energy (LKE) concept has been chosen, in order to model these mode energy with a new variable. A new deffinition is given to the LKE and a transport equation consequently derived to describe the Klebanoff modes growth and destabilisation. This equation is incorporated in a k-omega turbulence model as done by Walters & Cokljat, to give a three-equation kL-kT-omega formulation. This new model is written in a Reynolds-averaged Navier-Stokes (RANS) pattern and only uses local variables, it thus can be used in an industrial context.
3

Optimisation topologique d'écoulements turbulents et application à la ventilation des bâtiments / Topology optimization of turbulents flows and application to building's ventilation

Rivière, Garry 01 March 2017 (has links)
La ventilation joue un rôle important dans le confort thermique des occupants d'un bâtiment en climat chaud, en contribuant au rafraîchissement de l'air qui les entoure. Qu'elle soit mécanique ou naturelle, la ventilation doit être maîtrisée pour ne pas gêner l'occupant et respecter des normes ou réglementations en vigueur. Ces gênes sont liées à des vitesses d'air ou à une intensité turbulente trop élevée. Les concepteurs doivent alors faire appel à l'outil numérique pour une prédiction fine des écoulements d'air. La simulation de configurations à l'échelle du bâtiment peut se faire par une approche moyennée des équations de Navier-Stokes en complément d'un modèle de turbulence. Ces simulations sont utilisées par les chercheurs comme des outils de dimensionnement, ou encore, d'optimisation des composants de ventilation. De plus, la forme des bouches de ventilation peut contribuer passivement à l'optimisation de certains phénomènes aérauliques. L'amélioration de ces formes peut ainsi se faire par l'utilisation de méthodes d'optimisation de forme. L'optimisation topologique par ajout de matière permet de trouver des formes pour optimiser des fonctionnelles objectifs définies sur le fluide ou sur ses frontières. C'est sur cette méthode que ces travaux de thèse se concentrent pour proposer un outil de contrôle des écoulements d'air dans le bâtiment par la recherche de formes optimales de bouches de ventilation. Ces travaux de thèse proposent une contribution à l'optimisation topologique d'écoulements turbulents dans le bâtiment. Dans un premier temps, la méthode par ajout de matière est appliquée pour minimiser les pertes de charge dans une conduite d'aération en forme de Té. Le modèle adjoint développé est soumis à l'hypothèse de turbulence gelée. Dans un second temps le modèle adjoint complet est proposé pour le modèle de turbulence standard k-epsilon pour la réduction des pertes de charge d'une part et de l'intensité turbulente d'autre part. Enfin, ces outils sont appliqués à l'optimisation de forme de bouches de ventilation. Les résultats montrent ainsi un bon potentiel de l'optimisation topologique par ajout de matière pour l'orientation des écoulements d'air mais ne garantissent pas la maîtrise des vitesses d'air dans la pièce. De plus, la minimisation de l'intensité turbulente grâce à l'approche complète développée a contribué à la réduction du taux d'insatisfaction lié à une intensité turbulente trop élevée dans la pièce. / Ventilation plays a key role in thermal comfort of building's occupants in hot climates by refreshing air surrounding them. Mechanical or natural ventilation must be controlled for two reasons: do not disturb the bulding's occupants and comply with the regulations in force. Discomfort is linked to too high air velocities or turbulent intensity. Designers can use the numerical tools for a finer prediction of airflow. The simulation of configurations at the building scale can be done using averaged Navier-Stokes equations approach in addition to a turbulence model. These simulations are used by researchers as sizing tools or for the optimization of ventilation components. In addition, the shape of the ventilation nozzle can passively contributes to the optimization of some aeraulics phenomena. The improvement of these ventilation components can be achieved by the use of shape optimization methods. Topological optimization by addition of material makes it possible for the optimization of cost functions defined on the fluid or on its boundaries. The main objective of this manuscript is to propose a tool to control airflows in building by the search for optimal shape of ventilation nozzle. This work proposes a contribution to the topological optimization of turbulent flows in buildings. In a first step, topological optimization by adding material is applied to minimize pressure losses in a T-shaped pipe. The developed model is subjected to the hypothesis of the frozen turbulence. In a second step, the complete adjoint model is proposed for the standard turbulence model k-epsilon for the minimization of the total pressure losses on the one hand and the turbulent intensity on the other hand. Finally, these tools are applied to the shape optimization of ventilation nozzle. The results of topological optimization by adding virtual material show good potential for the orientation of the airflows but does not guarantee the control of the air velocities in the room. Moreover, the minimization of turbulent intensity through the complete approach contributed to the reduction of the dissatisfaction rate due to excessive turbulent intensity in the room.

Page generated in 0.0971 seconds