• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COMPARISON OF BEHAVIOR OF MOSFET TRANSISTORS DESCRIBED IN HARDWARE DESCRIPTION LANGUAGES

GURUMURTHY, ARAVIND 03 April 2006 (has links)
No description available.
2

HIGH-FREQUENCY CHARGE-PUMP BASED PHASE-LOCKED LOOP DESIGN AND IT'S CHARACTERIZATION USING VERILOG-AMS

SINGH, GUNEET 02 October 2006 (has links)
No description available.
3

HDL Descriptions of Artificial Neuron Activation Functions

Srinivasan, Vikram January 2005 (has links)
No description available.
4

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Zheng, Geng 05 1900 (has links)
This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP design. The PLL parasitic-aware optimization achieves a 10× speedup and a 147 µW power reduction. Thus the experimental results validate the effectiveness of the proposed solution.

Page generated in 0.025 seconds