• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNTHESIS OF MIXED-SIGNAL SYSTEMS BASED ON RAPID PROTOTYPING

GANESAN, SREELAKSHMI January 2001 (has links)
No description available.
2

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Zheng, Geng 05 1900 (has links)
This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP design. The PLL parasitic-aware optimization achieves a 10× speedup and a 147 µW power reduction. Thus the experimental results validate the effectiveness of the proposed solution.
3

Digital approach for the design of statistical analog data acquisition on SoCs

Souza Junior, Adao Antonio de January 2005 (has links)
With the current demand for mixed-signal SoCs, an increasing number of designers are looking for ADC architectures that can be easily implemented over digital substrates. Since ADC performance is strongly dependent upon physical and electrical features, it gets more difficult for them to benefit from more recent technologies, where these features are more variable. This way, analog signal acquisition is not allowed to follow an evolutionary trend compatible with Moore’s Law. In fact, such trend shall get worst, since newer technologies are expected to have more variable characteristics. Also, for a matter of economy of scale, many times a mixed-signal SoC presents a good amount of idle processing power. In such systems it is advantageous to employ more costly digital signal processing provided that it allows a reduction in the analog area demanded or the use of less expensive analog blocks, able to cope with process variations and uncertainty. Besides the technological concerns, other factors that impact the cost of the design also advise to transfer problems from the analog to the digital domain whenever possible: design automation and self-test requirements, for instance. Recent surveys indicate that the total cost in designer hours for the analog blocks of a mixed-signal system can be up to three times the cost of the digital ones. This manuscript explores the concept of bottom-up analog acquisition design, using statistical sampling as a way to reduce the analog area demanded in the design of ADCs within mixed-signal systems. More particularly, it investigates the possibility of using digital modeling and digital compensation of non-idealities to ease the design of ADCs. The work is developed around three axes: the definition of target applications, the development of digital compensation algorithms and the exploration of architectural possibilities. New methods and architectures are defined and validated. The main notions behind the proposal are analyzed and it is shown that the approach is feasible, opening new paths of future research. Keywords:
4

Digital approach for the design of statistical analog data acquisition on SoCs

Souza Junior, Adao Antonio de January 2005 (has links)
With the current demand for mixed-signal SoCs, an increasing number of designers are looking for ADC architectures that can be easily implemented over digital substrates. Since ADC performance is strongly dependent upon physical and electrical features, it gets more difficult for them to benefit from more recent technologies, where these features are more variable. This way, analog signal acquisition is not allowed to follow an evolutionary trend compatible with Moore’s Law. In fact, such trend shall get worst, since newer technologies are expected to have more variable characteristics. Also, for a matter of economy of scale, many times a mixed-signal SoC presents a good amount of idle processing power. In such systems it is advantageous to employ more costly digital signal processing provided that it allows a reduction in the analog area demanded or the use of less expensive analog blocks, able to cope with process variations and uncertainty. Besides the technological concerns, other factors that impact the cost of the design also advise to transfer problems from the analog to the digital domain whenever possible: design automation and self-test requirements, for instance. Recent surveys indicate that the total cost in designer hours for the analog blocks of a mixed-signal system can be up to three times the cost of the digital ones. This manuscript explores the concept of bottom-up analog acquisition design, using statistical sampling as a way to reduce the analog area demanded in the design of ADCs within mixed-signal systems. More particularly, it investigates the possibility of using digital modeling and digital compensation of non-idealities to ease the design of ADCs. The work is developed around three axes: the definition of target applications, the development of digital compensation algorithms and the exploration of architectural possibilities. New methods and architectures are defined and validated. The main notions behind the proposal are analyzed and it is shown that the approach is feasible, opening new paths of future research. Keywords:
5

Digital approach for the design of statistical analog data acquisition on SoCs

Souza Junior, Adao Antonio de January 2005 (has links)
With the current demand for mixed-signal SoCs, an increasing number of designers are looking for ADC architectures that can be easily implemented over digital substrates. Since ADC performance is strongly dependent upon physical and electrical features, it gets more difficult for them to benefit from more recent technologies, where these features are more variable. This way, analog signal acquisition is not allowed to follow an evolutionary trend compatible with Moore’s Law. In fact, such trend shall get worst, since newer technologies are expected to have more variable characteristics. Also, for a matter of economy of scale, many times a mixed-signal SoC presents a good amount of idle processing power. In such systems it is advantageous to employ more costly digital signal processing provided that it allows a reduction in the analog area demanded or the use of less expensive analog blocks, able to cope with process variations and uncertainty. Besides the technological concerns, other factors that impact the cost of the design also advise to transfer problems from the analog to the digital domain whenever possible: design automation and self-test requirements, for instance. Recent surveys indicate that the total cost in designer hours for the analog blocks of a mixed-signal system can be up to three times the cost of the digital ones. This manuscript explores the concept of bottom-up analog acquisition design, using statistical sampling as a way to reduce the analog area demanded in the design of ADCs within mixed-signal systems. More particularly, it investigates the possibility of using digital modeling and digital compensation of non-idealities to ease the design of ADCs. The work is developed around three axes: the definition of target applications, the development of digital compensation algorithms and the exploration of architectural possibilities. New methods and architectures are defined and validated. The main notions behind the proposal are analyzed and it is shown that the approach is feasible, opening new paths of future research. Keywords:

Page generated in 0.0673 seconds