Spelling suggestions: "subject:"verkehrsflussmodellierung"" "subject:"verkehrsflussmodellen""
1 |
Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022Wang, Meng, Jaekel, Birgit, Lehnert, Martin, Zhou, Runhao, Li, Zirui 13 June 2023 (has links)
The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts.
The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems.
In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles
1.1 Traffic-based Control of Truck Platoons on Freeways
1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic
1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations
1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency?
1.5 GLOSA System with Uncertain Green and Red Signal Phases
2 New Mobility Systems
2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks
2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network
3 Traffic Flow and Simulation
3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory
3.2 A RoundD-like Roundabout Scenario in CARLA Simulator
3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study
3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions
3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads
4 Traffic Control in Conventional Traffic
4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics
4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control
4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation
4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority
4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority
4.6 Towards Efficient Incident Detection in Real-time Traffic Management
4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control
5 Traffic Control with Autonomous Vehicles
5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles
5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration
6 User Behaviour and Safety
6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections
7 Demand and Traffic Management
7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data
7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices
8 Workshops
8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility
8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Future / Das 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums.
Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein.
In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles
1.1 Traffic-based Control of Truck Platoons on Freeways
1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic
1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations
1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency?
1.5 GLOSA System with Uncertain Green and Red Signal Phases
2 New Mobility Systems
2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks
2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network
3 Traffic Flow and Simulation
3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory
3.2 A RoundD-like Roundabout Scenario in CARLA Simulator
3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study
3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions
3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads
4 Traffic Control in Conventional Traffic
4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics
4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control
4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation
4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority
4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority
4.6 Towards Efficient Incident Detection in Real-time Traffic Management
4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control
5 Traffic Control with Autonomous Vehicles
5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles
5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration
6 User Behaviour and Safety
6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections
7 Demand and Traffic Management
7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data
7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices
8 Workshops
8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility
8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Future
|
2 |
Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control / Mikroskopische Verkehrsmodellierung menschlichen und automatisierten Fahrverhaltens: Verkehrsadaptive Strategie für GeschwindigkeitsreglerKesting, Arne 06 March 2008 (has links) (PDF)
The thesis is composed of two main parts. The first part deals with a microscopic traffic flow theory. Models describing the individual acceleration, deceleration and lane-changing behavior are formulated and the emerging collective traffic dynamics are investigated by means of numerical simulations. The models and simulation tools presented provide the methodical prerequisites for the second part of the thesis in which a novel concept of a traffic-adaptive control strategy for ACC systems is presented. The impact of such systems on the traffic dynamics can solely be investigated and assessed by traffic simulations. The focus is on future adaptive cruise control (ACC) systems and their potential applications in the context of vehicle-based intelligent transportation systems. In order to ensure that ACC systems are implemented in ways that improve rather than degrade traffic conditions, the thesis proposes an extension of ACC systems towards traffic-adaptive cruise control by means of implementing an actively jam-avoiding driving strategy. The newly developed traffic assistance system introduces a driving strategy layer which modifies the driver's individual settings of the ACC driving parameters depending on the local traffic situation. Whilst the conventional operational control layer of an ACC system calculates the response to the input sensor data in terms of accelerations and decelerations on a short time scale, the automated adaptation of the ACC driving parameters happens on a somewhat longer time scale of, typically, minutes. By changing only temporarily the comfortable parameter settings of the ACC system in specific traffic situations, the driving strategy is capable of improving the traffic flow efficiency whilst retaining the comfort for the driver. The traffic-adaptive modifications are specified relative to the driver settings in order to maintain the individual preferences. The proposed system requires an autonomous real-time detection of the five traffic states by each ACC-equipped vehicle. The formulated algorithm is based on the evaluation of the locally available data such as the vehicle's velocity time series and its geo-referenced position (GPS) in conjunction with a digital map. It is assumed that the digital map is complemented by information about stationary bottlenecks as most of the observed traffic flow breakdowns occur at these fixed locations. By means of a heuristic, the algorithm determines which of the five traffic states mentioned above applies best to the actual traffic situation. Optionally, inter-vehicle and infrastructure-to-car communication technologies can be used to further improve the accuracy of determining the respective traffic state by providing non-local information. By means of simulation, we found that the automatic traffic-adaptive driving strategy improves traffic stability and increases the effective road capacity. Depending on the fraction of ACC vehicles, the driving strategy "passing a bottleneck" effects a reduction of the bottleneck strength and therefore delays (or even prevents) the breakdown of traffic flow. Changing to the driving mode "leaving the traffic jam" increases the outflow from congestion resulting in reduced queue lengths in congested traffic and, consequently, a faster recovery to free flow conditions. The current travel time (as most important criterion for road users) and the cumulated travel time (as an indicator of the system performance) are used to evaluate the impact on the quality of service. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were significantly reduced even with much lower penetration rates. Moreover, the cumulated travel times decreased consistently with the increase in the proportion of ACC vehicles. / In der Arbeit wird ein neues verkehrstelematisches Konzept für ein verkehrseffizientes Fahrverhalten entwickelt und als dezentrale Strategie zur Vermeidung und Auflösung von Verkehrsstaus auf Richtungsfahrbahnen vorgestellt. Die operative Umsetzung erfolgt durch ein ACC-System, das um eine, auf Informationen über die lokale Verkehrssituation basierende, automatisierte Fahrstrategie erweitert wird. Die Herausforderung bei einem Eingriff in das individuelle Fahrverhalten besteht - unter Berücksichtigung von Sicherheits-, Akzeptanz- und rechtlichen Aspekten - im Ausgleich der Gegensätze Fahrkomfort und Verkehrseffizienz. Während sich ein komfortables Fahren durch große Abstände bei geringen Fahrzeugbeschleunigungen auszeichnet, erfordert ein verkehrsoptimierendes Verhalten kleinere Abstände und eine schnellere Anpassung an Geschwindigkeitsänderungen der umgebenden Fahrzeuge. Als allgemeiner Lösungsansatz wird eine verkehrsadaptive Fahrstrategie vorgeschlagen, die ein ACC-System mittels Anpassung der das Fahrverhalten charakterisierenden Parameter umsetzt. Die Wahl der Parameter erfolgt in Abhängigkeit von der lokalen Verkehrssituation, die auf der Basis der im Fahrzeug zur Verfügung stehenden Informationen automatisch detektiert wird. Durch die Unterscheidung verschiedener Verkehrssituationen wird ein temporärer Wechsel in ein verkehrseffizientes Fahrregime (zum Beispiel beim Herausfahren aus einem Stau) ermöglicht. Machbarkeit und Wirkungspotenzial der verkehrsadaptiven Fahrstrategie werden im Rahmen eines mikroskopischen Modellierungsansatzes simuliert und hinsichtlich der kollektiven Verkehrsdynamik, insbesondere der Stauentstehung und Stauauflösung, auf mehrspurigen Richtungsfahrbahnen bewertet. Die durchgeführte Modellbildung, insbesondere die Formulierung eines komplexen Modells des menschlichen Fahrverhaltens, ermöglicht eine detaillierte Analyse der im Verkehr relevanten kollektiven Stabilität und einer von der Stabilität abhängigen stochastischen Streckenkapazität. Ein tieferes Verständnis der Stauentstehung und -ausbildung wird durch das allgemeine Konzept der Engstelle erreicht. Dieses findet auch bei der Entwicklung der Strategie für ein stauvermeidendes Fahrverhalten Anwendung. In der Arbeit wird die stauvermeidende und stauauflösende Wirkung eines individuellen, verkehrsadaptiven Fahrverhaltens bereits für geringe Ausstattungsgrade nachgewiesen. Vor dem Hintergrund einer zu erwartenden Verbreitung von ACC-Systemen ergibt sich damit eine vielversprechende Option für die Steigerung der Verkehrsleistung durch ein teilautomatisiertes Fahren. Der entwickelte Ansatz einer verkehrsadaptiven Fahrstrategie ist unabhängig vom ACC-System. Er erweitert dessen Funktionalität im Hinblick auf zukünftige, informationsbasierte Fahrerassistenzsysteme um eine neue fahrstrategische Dimension. Die lokale Interpretation der Verkehrssituation kann neben einer verkehrsadaptiven ACC-Regelung auch der Entwicklung zukünftiger Fahrerinformationssysteme dienen.
|
3 |
Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise ControlKesting, Arne 22 January 2008 (has links)
The thesis is composed of two main parts. The first part deals with a microscopic traffic flow theory. Models describing the individual acceleration, deceleration and lane-changing behavior are formulated and the emerging collective traffic dynamics are investigated by means of numerical simulations. The models and simulation tools presented provide the methodical prerequisites for the second part of the thesis in which a novel concept of a traffic-adaptive control strategy for ACC systems is presented. The impact of such systems on the traffic dynamics can solely be investigated and assessed by traffic simulations. The focus is on future adaptive cruise control (ACC) systems and their potential applications in the context of vehicle-based intelligent transportation systems. In order to ensure that ACC systems are implemented in ways that improve rather than degrade traffic conditions, the thesis proposes an extension of ACC systems towards traffic-adaptive cruise control by means of implementing an actively jam-avoiding driving strategy. The newly developed traffic assistance system introduces a driving strategy layer which modifies the driver's individual settings of the ACC driving parameters depending on the local traffic situation. Whilst the conventional operational control layer of an ACC system calculates the response to the input sensor data in terms of accelerations and decelerations on a short time scale, the automated adaptation of the ACC driving parameters happens on a somewhat longer time scale of, typically, minutes. By changing only temporarily the comfortable parameter settings of the ACC system in specific traffic situations, the driving strategy is capable of improving the traffic flow efficiency whilst retaining the comfort for the driver. The traffic-adaptive modifications are specified relative to the driver settings in order to maintain the individual preferences. The proposed system requires an autonomous real-time detection of the five traffic states by each ACC-equipped vehicle. The formulated algorithm is based on the evaluation of the locally available data such as the vehicle's velocity time series and its geo-referenced position (GPS) in conjunction with a digital map. It is assumed that the digital map is complemented by information about stationary bottlenecks as most of the observed traffic flow breakdowns occur at these fixed locations. By means of a heuristic, the algorithm determines which of the five traffic states mentioned above applies best to the actual traffic situation. Optionally, inter-vehicle and infrastructure-to-car communication technologies can be used to further improve the accuracy of determining the respective traffic state by providing non-local information. By means of simulation, we found that the automatic traffic-adaptive driving strategy improves traffic stability and increases the effective road capacity. Depending on the fraction of ACC vehicles, the driving strategy "passing a bottleneck" effects a reduction of the bottleneck strength and therefore delays (or even prevents) the breakdown of traffic flow. Changing to the driving mode "leaving the traffic jam" increases the outflow from congestion resulting in reduced queue lengths in congested traffic and, consequently, a faster recovery to free flow conditions. The current travel time (as most important criterion for road users) and the cumulated travel time (as an indicator of the system performance) are used to evaluate the impact on the quality of service. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were significantly reduced even with much lower penetration rates. Moreover, the cumulated travel times decreased consistently with the increase in the proportion of ACC vehicles. / In der Arbeit wird ein neues verkehrstelematisches Konzept für ein verkehrseffizientes Fahrverhalten entwickelt und als dezentrale Strategie zur Vermeidung und Auflösung von Verkehrsstaus auf Richtungsfahrbahnen vorgestellt. Die operative Umsetzung erfolgt durch ein ACC-System, das um eine, auf Informationen über die lokale Verkehrssituation basierende, automatisierte Fahrstrategie erweitert wird. Die Herausforderung bei einem Eingriff in das individuelle Fahrverhalten besteht - unter Berücksichtigung von Sicherheits-, Akzeptanz- und rechtlichen Aspekten - im Ausgleich der Gegensätze Fahrkomfort und Verkehrseffizienz. Während sich ein komfortables Fahren durch große Abstände bei geringen Fahrzeugbeschleunigungen auszeichnet, erfordert ein verkehrsoptimierendes Verhalten kleinere Abstände und eine schnellere Anpassung an Geschwindigkeitsänderungen der umgebenden Fahrzeuge. Als allgemeiner Lösungsansatz wird eine verkehrsadaptive Fahrstrategie vorgeschlagen, die ein ACC-System mittels Anpassung der das Fahrverhalten charakterisierenden Parameter umsetzt. Die Wahl der Parameter erfolgt in Abhängigkeit von der lokalen Verkehrssituation, die auf der Basis der im Fahrzeug zur Verfügung stehenden Informationen automatisch detektiert wird. Durch die Unterscheidung verschiedener Verkehrssituationen wird ein temporärer Wechsel in ein verkehrseffizientes Fahrregime (zum Beispiel beim Herausfahren aus einem Stau) ermöglicht. Machbarkeit und Wirkungspotenzial der verkehrsadaptiven Fahrstrategie werden im Rahmen eines mikroskopischen Modellierungsansatzes simuliert und hinsichtlich der kollektiven Verkehrsdynamik, insbesondere der Stauentstehung und Stauauflösung, auf mehrspurigen Richtungsfahrbahnen bewertet. Die durchgeführte Modellbildung, insbesondere die Formulierung eines komplexen Modells des menschlichen Fahrverhaltens, ermöglicht eine detaillierte Analyse der im Verkehr relevanten kollektiven Stabilität und einer von der Stabilität abhängigen stochastischen Streckenkapazität. Ein tieferes Verständnis der Stauentstehung und -ausbildung wird durch das allgemeine Konzept der Engstelle erreicht. Dieses findet auch bei der Entwicklung der Strategie für ein stauvermeidendes Fahrverhalten Anwendung. In der Arbeit wird die stauvermeidende und stauauflösende Wirkung eines individuellen, verkehrsadaptiven Fahrverhaltens bereits für geringe Ausstattungsgrade nachgewiesen. Vor dem Hintergrund einer zu erwartenden Verbreitung von ACC-Systemen ergibt sich damit eine vielversprechende Option für die Steigerung der Verkehrsleistung durch ein teilautomatisiertes Fahren. Der entwickelte Ansatz einer verkehrsadaptiven Fahrstrategie ist unabhängig vom ACC-System. Er erweitert dessen Funktionalität im Hinblick auf zukünftige, informationsbasierte Fahrerassistenzsysteme um eine neue fahrstrategische Dimension. Die lokale Interpretation der Verkehrssituation kann neben einer verkehrsadaptiven ACC-Regelung auch der Entwicklung zukünftiger Fahrerinformationssysteme dienen.
|
Page generated in 0.0758 seconds