Spelling suggestions: "subject:"contradistinguishing edge coloring"" "subject:"thedistinguishing edge coloring""
1 |
Coloring, packing and embedding of graphsTahraoui, Mohammed Amin 04 December 2012 (has links) (PDF)
In this thesis, we investigate some problems in graph theory, namelythe graph coloring problem, the graph packing problem and tree pattern matchingfor XML query processing. The common point between these problems is that theyuse labeled graphs.In the first part, we study a new coloring parameter of graphs called the gapvertex-distinguishing edge coloring. It consists in an edge-coloring of a graph G whichinduces a vertex distinguishing labeling of G such that the label of each vertex isgiven by the difference between the highest and the lowest colors of its adjacentedges. The minimum number of colors required for a gap vertex-distinguishing edgecoloring of G is called the gap chromatic number of G and is denoted by gap(G).We will compute this parameter for a large set of graphs G of order n and we evenprove that gap(G) 2 fn E 1; n; n + 1g.In the second part, we focus on graph packing problems, which is an area ofgraph theory that has grown significantly over the past several years. However, themajority of existing works focuses on unlabeled graphs. In this thesis, we introducefor the first time the packing problem for a vertex labeled graph. Roughly speaking,it consists of graph packing which preserves the labels of the vertices. We studythe corresponding optimization parameter on several classes of graphs, as well asfinding general bounds and characterizations.The last part deal with the query processing of a core subset of XML query languages:XML twig queries. An XML twig query, represented as a small query tree,is essentially a complex selection on the structure of an XML document. Matching atwig query means finding all the occurrences of the query tree embedded in the XMLdata tree. Many holistic twig join algorithms have been proposed to match XMLtwig pattern. Most of these algorithms find twig pattern matching in two steps. Inthe first one, a query tree is decomposed into smaller pieces, and solutions againstthese pieces are found. In the second step, all of these partial solutions are joinedtogether to generate the final solutions. In this part, we propose a novel holistictwig join algorithm, called TwigStack++, which features two main improvementsin the decomposition and matching phase. The proposed solutions are shown to beefficient and scalable, and should be helpful for the future research on efficient queryprocessing in a large XML database.
|
2 |
Coloring, packing and embedding of graphs / Coloration, placement et plongement de graphesTahraoui, Mohammed Amin 04 December 2012 (has links)
Cette thèse se situe dans le domaine de graphes et de leurs applications, Elleest constitué de trois grandes parties, la première est consacrée à l’étude d’unnouveau type de coloration sommets distinguantes, les arête-colorations sommetsdistinguantespar écarte. Il consiste de trouver une valuation des arêtes qui permettede distinguer les sommets de graphes telle que chaque sommet v du graphe est identifiéde façon unique par la différence entre la plus grande et la plus petite des valeursincidentes à v. Le plus entier pour lequel le graphe G admet une arête-colorationsommets-distinguantes par écarte est le nombre chromatique par écart de G, notégap(G). Nous avons étudié ce paramètre pour diverses familles de graphes. Uneconjecture intéressante, proposée dans cette partie, suggère que le nombre chromatiquepar écart de tout graphe connexe d’ordre n > 2 vaut n - 1, n ou n + 1.La deuxième partie du manuscrit concerne le problème du placement de graphes.Nous proposons un état de l’art des problèmes de placement de graphes, puis nousintroduisons la nouvelle notion de placement de graphes étiquetés. Il s’agit d’unplacement de graphes qui préserve les étiquettes des sommets. Ensuite, nous proposonsdes encadrements de ce nouveau paramètre pour plusieurs classes de graphes.La troisième partie de la thèse s’intéresse au problème d’appariement d’arbres dansle cadre de la recherche d’information dans des documents structurés de type XML.Les algorithmes holistique de jointure structurelle est l’une des premières méthodesproposées pour résoudre l’appariement exact des documents XML. Ces algorithmessont souvent divisés en deux grandes étapes. La première étape permet de décomposerl’arbre de la requête en un ensemble de petites composantes connexes. Ensuite,des solutions intermédiaires pour chaque composante de la requête sont trouvées, cesrésultats intermédiaires sont joints pour obtenir la solution finale. Nous proposonsdans cette partie un nouvel algorithme appelé TwigStack++ qui vise principalementà diminuer le coût de la jointure et le calcule inutile recherche. Notre algorithmeobtient de meilleurs résultats en comparaison avec deux autres méthodes de l’étatde l’art. / In this thesis, we investigate some problems in graph theory, namelythe graph coloring problem, the graph packing problem and tree pattern matchingfor XML query processing. The common point between these problems is that theyuse labeled graphs.In the first part, we study a new coloring parameter of graphs called the gapvertex-distinguishing edge coloring. It consists in an edge-coloring of a graph G whichinduces a vertex distinguishing labeling of G such that the label of each vertex isgiven by the difference between the highest and the lowest colors of its adjacentedges. The minimum number of colors required for a gap vertex-distinguishing edgecoloring of G is called the gap chromatic number of G and is denoted by gap(G).We will compute this parameter for a large set of graphs G of order n and we evenprove that gap(G) 2 fn E 1; n; n + 1g.In the second part, we focus on graph packing problems, which is an area ofgraph theory that has grown significantly over the past several years. However, themajority of existing works focuses on unlabeled graphs. In this thesis, we introducefor the first time the packing problem for a vertex labeled graph. Roughly speaking,it consists of graph packing which preserves the labels of the vertices. We studythe corresponding optimization parameter on several classes of graphs, as well asfinding general bounds and characterizations.The last part deal with the query processing of a core subset of XML query languages:XML twig queries. An XML twig query, represented as a small query tree,is essentially a complex selection on the structure of an XML document. Matching atwig query means finding all the occurrences of the query tree embedded in the XMLdata tree. Many holistic twig join algorithms have been proposed to match XMLtwig pattern. Most of these algorithms find twig pattern matching in two steps. Inthe first one, a query tree is decomposed into smaller pieces, and solutions againstthese pieces are found. In the second step, all of these partial solutions are joinedtogether to generate the final solutions. In this part, we propose a novel holistictwig join algorithm, called TwigStack++, which features two main improvementsin the decomposition and matching phase. The proposed solutions are shown to beefficient and scalable, and should be helpful for the future research on efficient queryprocessing in a large XML database.
|
3 |
Colorations de graphes sous contraintes / Graph coloring under constraintsHocquard, Hervé 05 December 2011 (has links)
Dans cette thèse, nous nous intéressons à différentes notions de colorations sous contraintes. Nous nous intéressons plus spécialement à la coloration acyclique, à la coloration forte d'arêtes et à la coloration d'arêtes sommets adjacents distinguants.Dans le Chapitre 2, nous avons étudié la coloration acyclique. Tout d'abord nous avons cherché à borner le nombre chromatique acyclique pour la classe des graphes de degré maximum borné. Ensuite nous nous sommes attardés sur la coloration acyclique par listes. La notion de coloration acyclique par liste des graphes planaires a été introduite par Borodin, Fon-Der Flaass, Kostochka, Raspaud et Sopena. Ils ont conjecturé que tout graphe planaire est acycliquement 5-liste coloriable. De notre côté, nous avons proposé des conditions suffisantes de 3-liste coloration acyclique des graphes planaires. Dans le Chapitre 3, nous avons étudié la coloration forte d'arêtes des graphes subcubiques en majorant l'indice chromatique fort en fonction du degré moyen maximum. Nous nous sommes également intéressés à la coloration forte d'arêtes des graphes subcubiques sans cycles de longueurs données et nous avons également obtenu une majoration optimale de l'indice chromatique fort pour la famille des graphes planaires extérieurs. Nous avons aussi présenté différents résultats de complexité pour la classe des graphes planaires subcubiques. Enfin, au Chapitre 4, nous avons abordé la coloration d'arêtes sommets adjacents distinguants en déterminant les majorations de l'indice avd-chromatique en fonction du degré moyen maximum. Notre travail s'inscrit dans la continuité de celui effectué par Wang et Wang en 2010. Plus précisément, nous nous sommes focalisés sur la famille des graphes de degré maximum au moins 5. / In this thesis, we are interested in various coloring of graphs under constraints. We study acyclic coloring, strong edge coloring and adjacent vertex-distinguishing edge coloring.In Chapter 2, we consider acyclic coloring and we bound the acyclic chromatic number by a function of the maximum degree of the graph. We also study acyclic list coloring. The notion of acyclic list coloring of planar graphs was introduced by Borodin, Fon-Der Flaass, Kostochka, Raspaud, and Sopena. They conjectured that every planar graph is acyclically 5-choosable. We obtain some sufficient conditions for planar graphs to be acyclically 3-choosable.In Chapter 3, we study strong edge coloring of graphs. We prove some upper bounds of the strong chromatic index of subcubic graphs as a function of the maximum average degree. We also obtain a tight upper bound for the minimum number of colors in a strong edge coloring of outerplanar graphs as a function of the maximum degree. We also prove that the strong edge k-colouring problem, when k=4,5,6, is NP-complete for subcubic planar bipartite graphs with some girth condition. Finally, in Chapter 4, we focus on adjacent vertex-distinguishing edge coloring, or avd-coloring, of graphs. We bound the avd-chromatic number of graphs by a function of the maximum average degree. This work completes a result of Wang and Wang in 2010.
|
Page generated in 0.152 seconds