• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RNA Interference-Based Approach to Combat Viral Infections: Vesicular Stomatitis Virus Group Prototype

Ramirez Carvajal, Lisbeth 2011 August 1900 (has links)
Vesicular stomatitis virus (VSV) is considered a prototype for studying non-segmented negative-stranded ribonucleic acid (RNA) viruses. Livestock are naturally infected by VSV, causing severe economic impact due to lack of any effective treatment. RNA interference (RNAi)-based therapeutics are promising alternatives to control viral infections. Lentiviral vector systems deliver artificial short hairpin RNA (shRNA) into the genome of cells to activate the RNAi pathway. In this study, an RNAi-based approach to generate cell lines with reduced susceptibility to VSV (Indiana) infection was tested. First, eight shRNAs targeting either the nucleocapsid (N), phosphoprotein (P), or the polymerase (L) viral genes were designed and introduced into cell systems. To test the potency of the shRNAs for silencing the target viral transcripts, semi-quantitative polymerase chain reaction (PCR) analysis of viral N, P, and L transcripts was performed. Then, supernatants from infected groups were evaluated by microtitration and immunoblot. Finally, the effect of VSV genomic variability in the target region of shRNAs was predicted by partial sequencing field and laboratory-adapted strains. Viral transcripts were significantly reduced in cells stably expressing shRNAs targeting the N viral gene (nucleotides 67-97 or 1312-1332; p<0.05) or P gene (nucleotides 1772-1792; p&lt;0.05). Reduction in viral transcripts was not observed by other VSV-shRNAs tested. Reduction of viral transcripts by the N-shRNA (sh-1312) was accompanied by a decrease in viral protein. Also, a reduction in the viral particles shed from cells expressing N-shRNAs (nucleotides 67-97, p&lt;0.05) was noted. The results also showed complementarity of target gene sequences for shRNAs in the sequence from the laboratory-adapted strain and single base substitutions in the corresponding regions from VSV field isolates. However, these mismatches did not occur within the seed region of the shRNAs. In conclusion, partial silencing of viral transcripts by a single shRNA does not block VSIV replication; however, partial impairment of VSIV replication was observed in N-shRNAs expressing cells. During infection, the naturally high level of N gene transcription may have modulated the sh-RNA effect. The combination of the most potent shRNAs identified here into a multiple shRNA vector may result in further reduction of viral replication. These data contribute to ongoing development of effective RNAi-based technologies to combat viral diseases.
2

The Alpha Subunit of Eukaryotic Initiation Factor 2B Is Requisite for EIF2-Mediated Transitional Suppression of Vesicular Stomatitis Virus

Elsby, Rachel Jane 15 January 2008 (has links)
Eukaryotic initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor (GEF) that converts inactive eIF2 GDP-bound binary complexes into active eIF2 GTP-bound complexes that can bind initiator t-RNA molecules and ribosomes to begin translation. eIF2B is functionally divided into two subcomplexes: the catalytic core comprised of eIF2B epsilon and eIF2B gamma, and the regulatory core comprised of eIF2B alpha, eIF2B beta and eIF2B delta. While the catalytic subunits are responsible for exerting GEF activity, the regulatory subunits recognize eIF2 and respond to eIF2 alpha phosphorylation. Cellular stress, such as virus infection, inhibits host protein synthesis by activating specific kinases that are capable of phosphorylating the alpha subunit of eIF2, which can then sequester eIF2B to stall guanine nucleotide exchange by a currently unresolved mechanism. Importantly, we demonstrate that loss of eIF2B alpha or expression of a variant of the human eIF2B alpha subunit harboring a single point mutation (T41A) is sufficient to neutralize the consequences of eIF2 alpha phosphorylation, and render primary MEFs significantly more susceptible to vesicular stomatitis virus infection. To extend this analysis, we further exhibit the vital function of eIF2B alpha in protein synthesis through phenotypic studies in yeast. Here, we report that this subunit can sufficiently substitute for its yeast counterpart, GCN3, and reproduce similar growth phenotypes under normal and amino acid deprived conditions. In addition, the human eIF2B alpha-T41A variant was unable derepress GCN4 translation in response to an inhibitor of amino acid biosynthesis in yeast, an activity that requires sensitivity to phosphorylation of the yeast eIF2 alpha homolog, SUI2. Previously, we have demonstrated that vesicular stomatitis virus can infect and replicate to high levels in tumor cells. Moreover, these cells appear to contain defects in eIF2 alpha-mediated translational control, plausibly due to disregulation of eIF2B activity, which overcomes the inhibitory effects of eIF2 alpha phosphorylation. Our data suggest a role for eIF2B, specifically eIF2B alpha, in suppression of translation following virus infection, and imply that this complex may contribute to oncogenic transformation. These results emphasize the importance of eIF2B alpha in mediating eIF2 kinase translation inhibitory activity and may provide insight into the complex nature of viral oncolysis and cellular transformation.
3

Ribosome-Mediated Specificity in Vesicular Stomatitis Virus mRNA Translation Defines a New Role for rpL40 during Initiation

Lee, Amy January 2012 (has links)
Vesicular stomatitis virus (VSV) infection causes inhibition of host protein synthesis, in part by sequestering initiation factors required for mRNA cap recognition. The viral mRNAs share a common mRNA structure to those of the host cell, with a 5' cap and 3' polyadenylate tail, but continue to be efficiently translated despite host translational shutoff. This observation suggests that a non-canonical translation pathway is utilized for viral protein synthesis. To investigate this pathway, we performed an RNA interference screen to identify genes required for VSV replication. In contrast to bulk cellular translation, viral translation is hypersensitive to knockdown of a protein constituent of the 60S ribosomal subunit, rpL40. Depletion of rpL40 diminishes VSV protein synthesis by >90% and is restored through complementation with an siRNA-resistant mutant of rpL40. To delineate the mechanism by which rpL40 is required for viral protein synthesis, we reconstituted translation of VSV mRNA in yeast extracts in vitro. In the absence of rpL40, we show that the two ribosomal subunits fail to associate on VSV mRNA, and the small subunit does not scan to the initiation codon. Regulation by rpL40 occurs in context of the large subunit, providing direct evidence for translational control by the ribosome itself. This rpL40- dependent mechanism of translation initiation is broadly conserved within eukaryotes, governed solely through an RNA determinant, and is utilized by several viruses within the order Mononegavirales. To determine whether a subset of cellular transcripts also require rpL40 for translation, we identified polysome-associated mRNAs in yeast by deep sequencing. We demonstrate that in vitro and in vivo translation of candidate mRNAs, including factors involved in stress responses, are inhibited in the absence of rpL40. This finding suggests that rpL40 plays a critical role in transcript-specific translation during cellular stress. Collectively, our work identifies an alternative translation pathway that is specifically dependent on rpL40, revealing a previously unappreciated mechanism of protein synthesis regulation by the ribosome.
4

Type I interferon stimulation of lymphocytes

Kamphuis, Elisabeth. January 2007 (has links)
University, Diss., 2006--Giessen.
5

Type I interferon stimulation of lymphocytes

Kamphuis, Elisabeth January 2006 (has links) (PDF)
Zugl.: Giessen, Univ., Diss., 2006
6

MODIFICATION OF VESICULAR STOMATITIS VIRUS G PROTEIN FOR TARGETED GENE DELIVERY INTO PSCA-POSITIVE TUMOR CELLS

Günes, Serap 26 June 2007 (has links) (PDF)
Gene therapy is a promising treatment option for cancer. Ideally, a therapeutic gene is delivered specifically into tumor cells sparing the neighboring normal cells. For this purpose gene delivery vectors are designed that can recognize structures, which are exclusively expressed on tumor cells (i.e. the tumor-associated antigens -TAA-). Retroviral vectors are commonly used for gene therapy by modifying the envelope protein responsible for the recognition of the target cell. The Vesicular Stomatitis Virus G protein (VSV-G) is a well-liked choice for pseudotyping the retroviral vectors since it confers on the viral particle stability to allow concentration to high titers necessary for the clinical applications. However, the main drawback of VSV-G, the ubiquitously expressed receptor and thus the broad target range, hinders the use of this protein for targeted gene therapy. In this thesis, we aimed to modify the VSV-G for targeted gene therapy against Prostate Stem Cell Antigen (PSCA) -expressing tumors. Therefore we followed two approaches. The first approach comprised of the fusion of a single-chain antibody fragment against PSCA to the N-terminus of VSV-G. In the second approach the VSV-G was modified by insertion of a small epitope. We could demonstrate that two positions in the N-terminal region of VSV-G protein permit insertion of a ten amino acid long epitope. These mutant VSV-G proteins were successfully assembled into retroviral particles. We demonstrated that the mutant retroviral particles can be used for targeting to PSCA-positive cells using nanobeads. The nanobeads were chemically coupled to antibodies against the epitope in the VSV-G protein and PSCA on the tumor cell. These bispecific nanobeads allowed the recruitment of mutant retroviral particles to the PSCApositive cells. Our results point out the potential of these mutant retroviral particles in targeted gene delivery. Further studies will be necessary to assess the efficiency of in vivo targeted gene therapy using these mutant retroviral particles.
7

MODIFICATION OF VESICULAR STOMATITIS VIRUS G PROTEIN FOR TARGETED GENE DELIVERY INTO PSCA-POSITIVE TUMOR CELLS

Günes, Serap 21 June 2007 (has links)
Gene therapy is a promising treatment option for cancer. Ideally, a therapeutic gene is delivered specifically into tumor cells sparing the neighboring normal cells. For this purpose gene delivery vectors are designed that can recognize structures, which are exclusively expressed on tumor cells (i.e. the tumor-associated antigens -TAA-). Retroviral vectors are commonly used for gene therapy by modifying the envelope protein responsible for the recognition of the target cell. The Vesicular Stomatitis Virus G protein (VSV-G) is a well-liked choice for pseudotyping the retroviral vectors since it confers on the viral particle stability to allow concentration to high titers necessary for the clinical applications. However, the main drawback of VSV-G, the ubiquitously expressed receptor and thus the broad target range, hinders the use of this protein for targeted gene therapy. In this thesis, we aimed to modify the VSV-G for targeted gene therapy against Prostate Stem Cell Antigen (PSCA) -expressing tumors. Therefore we followed two approaches. The first approach comprised of the fusion of a single-chain antibody fragment against PSCA to the N-terminus of VSV-G. In the second approach the VSV-G was modified by insertion of a small epitope. We could demonstrate that two positions in the N-terminal region of VSV-G protein permit insertion of a ten amino acid long epitope. These mutant VSV-G proteins were successfully assembled into retroviral particles. We demonstrated that the mutant retroviral particles can be used for targeting to PSCA-positive cells using nanobeads. The nanobeads were chemically coupled to antibodies against the epitope in the VSV-G protein and PSCA on the tumor cell. These bispecific nanobeads allowed the recruitment of mutant retroviral particles to the PSCApositive cells. Our results point out the potential of these mutant retroviral particles in targeted gene delivery. Further studies will be necessary to assess the efficiency of in vivo targeted gene therapy using these mutant retroviral particles.
8

Oncolytic Viruses as a Potential Approach to Eliminate Cells That Constitute the Latent HIV Reservoir

Ranganath, Nischal 03 April 2018 (has links)
HIV infection represents a major health and socioeconomic challenge worldwide. Despite significant advances in therapy, a cure for HIV continues to be elusive. The design of novel curative strategies will require targeting and elimination of cells that constitute the latent HIV-1 reservoir. However, such an approach is impeded by the inability to distinguish latently HIV-infected cells from uninfected cells. The type-I interferon (IFN-I) response is an integral antiviral defense mechanism, but is impaired at multiple levels during productive HIV infection. Interestingly, similar global impairments in IFN-I signaling have been observed in various human cancers. This led to the development of IFN-sensitive oncolytic viruses, including the recombinant Vesicular Stomatitis Virus (VSV 51) and Maraba virus (MG1), as virotherapy designed to treat various cancers. Based on this, it was hypothesized that IFN-I signaling is impaired in latently HIV-infected cells (as observed in productively infected cells) and that VSV 51 and MG1 may be able to exploit such intracellular defects to target and eliminate latently HIV-infected cells, while sparing healthy cells. First, using cell line models of HIV-1 latency, intracellular defects in IFN-I responses, including impaired IFN / production and expression of IFNAR1, MHC-I, ISG15, and PKR, were demonstrated to represent an important feature of latently HIV-infected cells. Consistent with this, the latently HIV-infected cell lines were observed to have a greater sensitivity to VSV 51 and MG1 infection, and MG1-mediated killing, than the HIV-uninfected parental cells. Next, the ability of oncolytic viruses to kill latently HIV-infected human primary cells was demonstrated using an in vitro resting CD4+ T cell model of latency. Interestingly, while both VSV 51 and MG1 infection resulted in a significant reduction in inducible p24 expression, a dose-dependent decrease in integrated HIV-1 DNA was only observed following MG1 infection. In keeping with this, MG1 infection of memory CD4+ T cells from HIV-1 infected individuals on HAART also resulted in a significant decrease in inducible HIV-1 gag RNA expression. By targeting an intracellular pathway that is impaired in latently HIV-infected cells, the findings presented in this dissertation highlight a novel, proof-of-concept approach to eliminate the latent HIV-1 reservoir. Given that VSV 51 and MG1 are currently being studied in cancer clinical trials, there is significant potential to translate this work to in vivo studies.
9

Aptamers as Enhancers of Oncolytic Virus Therapy

Muharemagic, Darija January 2015 (has links)
Oncolytic viruses promise to significantly improve current cancer treatments through their tumour-selective replication and multimodal attack against cancer cells. However, one of the biggest setbacks for oncolytic virus therapies is the intravenous delivery of the virus, as it can be cleared by neutralizing antibodies (nAbs) from the bloodstream before it reaches the tumour cells. In our group, we have succeeded in developing aptamers to vesicular stomatitis virus (VSV), as well as to rabbit anti-VSV polyclonal neutralizing antibodies (nAbs). We tested these aptamers’ biological activity with a cell-based plaque forming assay and found that the aptamers prevented in vitro neutralization of VSV by nAbs and increased the virus infection rate of transformed cells up to 77%. In line with this approach, we enhanced the delivery of oncolytic viruses by selecting aptamers to the CT26 colon carcinoma cell line. The binding of aptamer pools has been tested on flow cytometry and the best pools were subjected to high throughput sequencing. Selected aptamers were linked to anti-VSV aptamers and applied for target delivery of the virus to cancer cells. Development of this aptamer-based technology aims to improve viral anti-cancer therapies, with a potential to be applied as treatment for patients affected with cancer. Finally, in collaboration with a group from Erlangen University, we performed an aptamer selection using capillary electrophoresis and cell-SELEX. The target, the extracellular domain of human CD83, is a maturation marker for dendritic cells and is involved in the regulation of the immune system. Selected aptamer sequences bound selectively to mature dendritic cells, in comparison to immature dendritic cells, and thus hold promise to be applied for further studies leading to a better understanding of CD83’s mechanism of action.
10

Vesicular Stomatitis Virus as a Vector to Deliver Virus-Like Particles of Human Norovirus: A New Live Vectored Vaccine for Human Norovirus

Ma, Yuanmei 22 May 2013 (has links)
No description available.

Page generated in 0.0694 seconds