Spelling suggestions: "subject:"bibration,"" "subject:"clibration,""
851 |
Vibration Analysis of Human Knee Joint in Healthy and Osteoarthritic Knees / Vibration Analysis of Healthy and Osteoarthritic KneesSharif, Siamak January 2007 (has links)
The goal of this thesis is to investigate the possibility of using vibration analysis to detect and assess a very common joint disease known as osteoarthritis (OA). For this purpose, patients with various levels of OA, healthy to severe OA, were recruited and MRI and vibration recordings were made on both knees. MRI images were analyzed by a radiologist and different symptoms related to osteoarthritis in the knee were scored for each observation. Vibration signals of the patients' knees were recorded using 5 accelerometers placed at different locations of the knee. This thesis divides into two major sections; the first section deals with design of an apparatus (a function specific brace and the electronic hardware) for acquiring and recording vibration data from a patient's knee. The second section deals with the analysis of the recorded data using a combination of signal processing techniques (Fourier and wavelet transforms) and multivariate statistical methods (principal component (PCA) and partial least square (PLS)). The brace designed and built for the purpose of this research has several unique properties not found in commercial knee braces. It provides a robust and secure base for attachment of the sensors to the knee and shows very good adaptation to the dynamics of the knee during motion. In the analysis section we show that combining signal processing and multivariate statistical techniques (such as PCA and PLS) provides strong tools for analysis of the data. The result of our analysis shows that there is a strong correlation between vibration analysis and some of the symptoms of osteoarthritis such as cartilage degeneration and formation of osteophytes. We conclude that vibration signals of the knee joint (crepitus) during flexion/extension cycle of the knee, when it is under stress, can be a good indicator of the general severity of OA in patients. / Thesis / Master of Science (MS)
|
852 |
Flow-Induced Vibrations of a Rotary Mixing BladeVeljkovic, Ivan January 2001 (has links)
Bluff bodies immersed in a fluid stream are susceptible to flow-induced vibrations. Depending on the body dynamic characteristics and flow conditions, different types of flow-induced vibrations may occur. The failure of a blade in a large mixing vessel in a chemical plant raised the question of the response of a parabolic cross-section bluff body to the flow excitation. Experiments were conducted in a wind tunnel using two- dimensional “sectional” models. Models with parabolic, semi-elliptic and semi-circular cross-section were investigated. In the dynamic experiments, flow velocity was increased from 0 to 22 m\s, and the oscillating amplitude and wake response were monitored. Vortex-induced vibrations were observed with Strouhal numbers for parabolic and semi-circular cross-sections of 0.13 and 0.12, respectively. Steady lift force and fluid moment for different angles of attack were monitored in the static experiments. From these results, lift and moment coefficients were calculated. For the closed semi-circular cross-section, Reynolds number had a strong influence on the lift coefficient. With an increase in Reynolds number, the lift coefficient decreased. The largest difference was noted at an angle of attack a = 45°. In contrast, the open semi-circular model lift coefficient was independent of Reynolds number. In the experiments where the elastic axis of the model coincided with the model centre of gravity, galloping was not observed in the plunge mode. When the model elastic axis was moved to a position 90 mm behind the test model centre of gravity, galloping was observed for the semi-elliptic and parabolic models. The onset of galloping coincided with the vortex-induced resonance. Changing the model elastic axis position introduced a combination of plunge and torsional motion, and latter is believed to be responsible for the existence of galloping. The parabolic model was modified in an attempt to eliminate galloping instability. Fins were added at the separation points to widen the wake and prevent the reattachment of the flow to the afterbody. With these changes, galloping was not observed, although the oscillation amplitudes remained unacceptably high.
The present investigation revealed previously unknown characteristics of semi-elliptical and parabolic cross-section bluff body behaviour in fluid flow. At the same time, it laid a foundation for the solution to the practical problem encountered when a parabolic cross-section bluff body was used as a mixing blade. / Thesis / Master of Engineering (ME)
|
853 |
Determination of blast vibrations using peak particle velocity at Bengal quarry, in St Ann, JamaicaNicholson, Roy Fitzgerald January 2005 (has links)
In recent times Jamaica has experienced an increase in infrastructure and mineral resource (bauxite) developments. As a result, quarrying activities have also increased to supply the needed construction material. Blasting has been the main technique for loosening insitu rock before transporting to construction site. Consequently there is a growing concern of the effects of blasting activities on the environment. These effects are normally nuisances to the neighbouring residence as they come in the form of: dust, toxic gases, noise, fly rocks and ground vibration. Of the set of nuisances the one that is of most concern is ground vibrations which can cause damage to structures. In most cases worldwide, after blasting activities there are the usual complaints about damage to residence, which is also a focus of the thesis. There have been researches on the subject of ground vibrations to help refute some of these complaints. The works of Lewis Oriard and Charles Dowding are the foundation on which standards and regulations are built as guides to assist blasters in the prevention of creating unnecessary nuisances. Most countries have developed their own regulations with respect to blasting and parameters are set according to the geological conditions. This is of importance as the rock structures determine the transmission of the peak particle velocity. However, most countries in the west adopt standards similar to ones put forward by the United States Bureau of Mines or The Office of Surface Mining. It is my opinion that a whole scale adoption should not take place, as the criteria used may not be suitable for other countries’ geological conditions. For this thesis the aim was to identify a vibration level that will not cause damage to structures close to a quarry. Based on the literature review it was revealed that there are a number of parameters that needed to be considered. These ranges: construction material, age of structures, distance from structures, geology of the location, type and quantities of explosives and the blast design. There was also the review of standards to building threshold with respect to the level of ground vibration. The case study with its main focus on vibration levels at structures in close proximity to the Bengal quarry revealed that a tolerable level can be determined which will not result in any form of damage to the structures. However, having established a PPV limit using the USBM and OSM standards that appears reasonable there is the need for criteria similar to those of the USBM and OSM using blasting and geological conditions in Jamaica. Due to the time constraints (20 wks) it is recommended that future research is carried out in this area especially in relation to assessing the performances of the structures. / <p>Validerat; 20101217 (root)</p>
|
854 |
Performance of Nonlinear Mechanical, Resonant-Shunted Piezoelectric, and Electronic Vibration Absorbers for Multi-Degree-of-Freedom StructuresAgnes, Gregory Stephen 10 September 1997 (has links)
Linear vibration absorbers are a valuable tool used to suppress vibrations due to harmonic excitation in structural systems. Limited evaluation of the performance of nonlinear vibration absorbers for nonlinear structures exists in the current literature. The state of the art is extended in this work to vibration absorbers in their three major physical implementations: the mechanical vibration absorber, the inductive-resistive shunted piezoelectric vibration absorber, and the electronic vibration absorber (also denoted a positive position feedback controller). A single, consistent, physically similar model capable of examining the response of all three devices is developed.
The performance of vibration absorbers attached to single-degree-of-freedom structures is next examined for performance, robustness, and stability. Perturbation techniques and numerical analysis combine to yield insight into the tuning of nonlinear vibration absorbers for both linear and nonlinear structures. The results both clarify and validate the existing literature on mechanical vibration absorbers. Several new results, including an analytical expression for the suppression region's location and bandwidth and requirements for its robust performance, are derived.
Nonlinear multiple-degree-of-freedom structures are next evaluated. The theory of Nonlinear Normal Modes is extended to include consideration of modal damping, excitation, and small linear coupling, allowing estimation of vibration absorber performance. The dynamics of the N+1-degree-of-freedom system reduce to those of a two-degree-of-freedom system on a four-dimensional nonlinear modal manifold, thereby simplifying the analysis. Quantitative agreement is shown to require a higher order model which is recommended for future investigation.
Finally, experimental investigation on both single and multi-degree-of-freedom systems is performed since few experiments on this topic are reported in the literature. The experimental results qualitatively verify the analytical models derived in this work. The dissertation concludes with a discussion of future work which remains to allow nonlinear vibration absorbers, in all three physical implementations, to enter the engineer's toolbox. / Ph. D.
|
855 |
Modeling the Dynamic Interactions between Wood Pallets and Corrugated Containers during ResonanceWeigel, Timothy G. 14 August 2001 (has links)
The unit load is the form of most commercial and industrial products during storage and distribution. A simple form of a unit load, a palletized bulk bin is commonly used to transport fruit and vegetables from the point of harvest to processing facilities. These vibration sensitive products are often subjected to damaging vibrations during this period. Most damage occurs during the large accelerations associated with resonance, which occurs when the natural frequency of the unit load matches the input frequencies commonly encountered during transportation. A computer model, called RoPUL (resonance of palletized unit loads), of a palletized bulk bin loaded with fruit, was developed using finite element analysis techniques. Unit loads consisting of palletized bulk bins of apples and peaches were tested and RoPUL was found to accurately predict the resonant frequencies of these loads. Using RoPUL, the effects of product mass, container design, and pallet design on natural frequencies can be analyzed. As the input frequencies of most transportation modes is well documented, RoPUL can be used to help design a unit load to better protects vibration sensitive products during shipment. / Ph. D.
|
856 |
Static Misalignment Effects is a Self-Tracking Laser Vibrometry System for Rotating Bladed DisksLomenzo, Richard Allan Jr. 12 November 1998 (has links)
The application of laser Doppler vibrometry to high speed rotating structures has been hampered by technical limitations. Whereas full-field three-dimensional velocity measurements can be made on stationary structures, the capability on rotating structures is limited to low speed, one-dimensional, steady state operation. This work describes the implementation of a self-tracking laser vibrometry system which overcomes many of the limitations of current techniques for vibration measurements on rotating structures. A model of the self-tracker is developed and used to predict the effects of static misalignments on the position and velocity errors. These predictions are supported by experimental results and simplified models of the self-tracker.
NOTE: (02/2011) An updated copy of this ETD was added after there were patron reports of problems with the file. / Ph. D.
|
857 |
Dynamics and Control for Vibration Isolation DesignSciulli, Dino 28 April 1997 (has links)
The single-degree-of-freedom (SDOF) system is the most widely used model for vibration isolation systems. The SDOF system is a simple but worthy model because it quantifies many results of an isolation system. For instance, a SDOF model predicts that the high frequency transmissibility increases when the isolator has passive damping although this does not occur for an isolator implementing active damping. A severe limitation of this system is that it cannot be used when the base and/or equipment are flexible. System flexibility has been considered in previous literature but the flexibility has always been approximated which leads to truncation errors. The analysis used in this work is more sophisticated in that it can model the system flexibility without the use of any approximations. Therefore, the true effects of system flexibility can be analyzed analytically.
Current literature has not fully explored the choice of mount frequency or actuator placement for flexible systems either. It is commonly suggested that isolators should be designed with a low-frequency mount. That is, the isolator frequency should be much lower than any of the system frequencies. It is shown that these isolators tend to perform best in an overall sense; however, mount frequencies designed between system modes tend to have a coupling effect. That is, the lower frequencies have such a strong interaction between each other that when isolator damping is present, multiple system modes are attenuated. Also, when the base and equipment are flexible, isolator placement becomes a critical issue. For low-frequency mount designs, the first natural frequency can shift as much as 15.6% for various isolator placements.
For a mid-frequency mount design, the shift of the first three modes can be as high as 34.9%, 26.6% and 11.3%, respectively, for varying isolator placements.
NOTE: (03/2011) An updated copy of this ETD was added after there were patron reports of problems with the file. / Ph. D.
|
858 |
Combined Shock and Vibration Isolation Through the Self-Powered, Semi-Active Control of a Magnetorheological Damper in Parallel with an Air SpringTanner, Edward Troy 02 December 2003 (has links)
Combining shock and vibration isolation into a single isolation system package is explored through the use of an air spring in parallel with a controlled magnetorheological fluid damper. The benefits of combining shock and vibration isolation into a single package is discussed. Modeling and control issues are investigated and test and simulation results are discussed. It is shown that this hybrid isolation system provides significantly increased performance over current state-of-the-art passive systems. Also explored is the feasibility of scavenging and storing ambient shipboard vibration energy for use in powering the isolation system.
To date the literature has not adequately explored the direct design of a combined shock and vibration isolation system. As shock and vibration isolation are typically conflicting goals, the traditional approach has been to design separate shock and vibration isolation systems and operate them in parallel. This approach invariably leads to compromises in terms of the performance of both systems. Additionally, while considerable research has been performed on magnetorheological fluids and devices based on these fluids, there has been little research performed on the use of these fluids in devices that are subjected to high velocities such as the velocity seen by a ship exposed to underwater near-miss explosive events. Also missing from the literature is any research involving the scavenging and storage of ambient shipboard vibration energy. While the focus of this work is on the use of this scavenged energy to power the subject isolation system, many other uses for this energy can be envisioned.
Experimental and analytical results from this research clearly show the advantages of this hybrid isolation system. Drop tests show that inputs as great as 167 g's were reduced to 3.42 g's above mount at 1.11 inches of deflection using a Velocity Feedback controller suggested by the author. When contrasted with typical test results with similar inputs, the subject isolation system achieved reductions in above mount accelerations of 300% and reductions in mount deflections of 200% over current state-of-the-art passive shipboard isolation systems. Furthermore, simulations using a validated model of the isolation system suggest that this performance improvement can be achieved in multi-degree-of-freedom isolation systems as well. It was shown that above mount accelerations in the vertical and athwartship directions could be effectively limited to a predefined value, while achieving the absolute minimum mount defections, using an Acceleration Limiting Bang-Bang controller suggested by the author. Further experimentation suggests that the subject isolation system could be entirely self-powered from scavenged ambient shipboard vibration energy. An experiment using an energy scavenging and storage system consisting of a Piezoelectric Stack Generator and a bank of ultracapacitors showed that enough energy could be harvested to power the isolation system though several shock events. / Ph. D.
|
859 |
An approximate method for the transient response of nonlinear systemsCunniff, Patrick F. January 1962 (has links)
The analysis of engineering structures which are subjected to dynamic forces is an area of study which has received considerable attention in recent years. In some cases, an understanding of the behavior of a structure under its expected time-varying loads is imperative so that the designed facility fulfills its intended purpose. Such structures might be simple beams, columns, rigid frames, electrical, and mechanical equipment, etc.
In general, there are three types of motion which the design engineer might be required to investigate due to certain prescribed loads, namely, transient response, steady-state vibrations, and random vibrations. The motion studied usually depends upon the expected or predicted load which is sometimes called the input of the system. In what follows, only transient responses of systems subjected to short time-duration loads are considered. These impulsive-type forces might arise from sources such as earthquake tremors, wind gust forces and pressure, and pressure waves from explosions.
Of the various assumptions which the engineer must make when studying the dynamic response of structures, one of the most important is perhaps the model representation of the true structure. One method of representation is to judiciously idealize the structure into concentrated mass and to connect, each lumped mass to its neighbor by weightless springs and dashpots. The number of masses and the constraints or lack of them on each mass determine the number of degrees-of-freedom of the system. The differential equations which describe the motion of the model are either linear or nonlinear, depending upon the behavior of each mass, spring, and dashpot. / Ph. D.
|
860 |
Investigation of the behavior of continuous beams under steady state forced vibrationMartin, Michael Joseph January 1959 (has links)
C.T.G. Looney proposed a method of solving the problem of steady-state forced vibration of continuous frames. Starting with the analysis of a single span, simply supported beam, the method was extended to continuous beams and frames. An investigation of his method was undertaken comparing experimental deflection with those predicted by Looney’s method. A single span beam and a two span continuous beam was used in the experiment. A mechanical shaker was used to vibrate the beam. The experimental and nautical curves showed good agreement with the experimental values being consistently higher. Although the weight of the shaker's moving parts was less than one-tenth the weight of the beam it had considerable effect in lowing the resonant frequency and increasing amplitudes. / M.S.
|
Page generated in 0.5197 seconds