• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 81
  • 13
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 98
  • 70
  • 61
  • 60
  • 51
  • 45
  • 43
  • 39
  • 39
  • 32
  • 32
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Finite element modeling of blast vibrations and study of vibration control criteria

Jayasuriya, A. M. M. January 1989 (has links)
No description available.
102

CHARACTERIZATION OF SHEET DYNAMICS AND IRREGULAR STRUCTURES OF DROP ATOMIZATION VIA INTERFEROMETRY DIAGNOSTICS

Weixiao Shang (13162290) 27 July 2022 (has links)
<p>The impinging jets atomizer is widely used in engineering applications. As two liquid jetsimpinging to each other, a liquid sheet is first formed and then breaks up into small dropletsto comply the atomization. The features such as size, shape, velocity, thickness, etc., of thesheet/droplet are controlled by various impingement parameters such as impinging angle,jet velocity, and physical properties of the liquid. Since the sheet generation is prior to thedroplet, the modeling of the sheet is the premise of the droplet modeling. Therefore, to studythe atomization of the impinging jet atomizer, it is important to pay effort on the research ofimpinging sheet both experimentally and theoretically. In this research, the characterizationof the impinging sheet formed by two jets is given in two specific aspects, the thicknessand the velocity. A non-intrusive measurement technique, partial coherent interferometry(PCI) is developed and applied to measure the thickness of the impinging sheet dynamically.The PCI unitizes the calibrated linear relationship between the optical path difference andthe degree of coherence to measure the impinging sheet thickness. By placing the sheet inone of the two branches of the designed interferometer, the optical path is altered basedon the sheet thickness and shown as the change of the degree of coherence of interferencepattern recorded by the camera. With a calibration process, the thickness of the sheet is thencan be measured via a designed interferometer. The velocity measurement of the impingingsheet is implemented via particle tracking velocimetry (PTV) adopted with the shadowgraphtechnique. To implement the particle tracking velocimetry, seeding particles are added intothe fluid and with the aid of an imaging acquiring system and the post-processing algorithm,the locations of those particles in different frames are identified. Thus, the velocity of the fluidis estimated as the velocity of the particles calculated from the recorded images. However,while applying the PTV to investigate the impinging sheet studied in this research, theparticles can be recorded at a large field of view with insufficient magnification. This is ownedto the so-called "particle induced lens effect" found when applying the small particles to athin liquid sheet. When the seeding particles move to the region where the sheet thicknesshas a similar scale as the particle, the fluid will wrap around the particle and act as a positivelens. For shadowgraph imaging, the collimated light forms an enlarged shadow at the image plane by passing through such lens. Experimentally, the thickness measurements via PCIare implied to the impinging sheet generated under a range of Reynolds number between 269to 370 and velocity measurements via PTV are implied to the ones under Reynolds numberof 362 to 430. The measured results for both thickness and velocity are different from thetheoretical model of the impinging sheet which implies the need for a review of sheet model.Therefore, in this research, the author proposed a revised impinging sheet model considerthe friction effect due to the air over the sheet. A theoretical analysis is made base on theboundary layer equation under the cylindrical coordinate with unique boundary conditionsassumed for the impinging sheet. By introducing the unique similarity variable found byauthor, the equation could be transformed to an ordinary differential equation and solvednumerically. The revised model first predict the air boundary layer profile over the sheet,then, estimate the sheet velocity profile as a function of the distance to the impinging pointand the azimuth angle. As a parameter of the revised sheet model, the jet velocity profilebefore the impingement is also assumed as a free jet gradually developed from a Posieuilleflow and estimated in advance. The revised model is compared with the experimental resultsand some key parameters are identified empirically.</p> <p>Other than the thickness and velocity, this research is also interested in measuring thegeometry of the sheet and the detached droplets. Thus, a multi-view digital inline holography(DIH) technique is developed to capture the three-dimensional shape of the impinging sheetand the locations of the droplets. The DIH determines the shape and location of the targetin a detection volume base on the recorded hologram. The MvDIH, as the name suggested,combines the DIH results from multiple orientations to reconstruct the shape and the locationof the target. Two reconstruction ideologies, cross-section based one and the outline basedone, are proposed. The former estimates the target by finding the intersection of the recordedcross-sections of the target from different views. The latter estimates the target geometryby combining the outlines determined by DIH at different views. To evaluate the feasibilityof such technique, a test model which imitates the droplet and liquid ligament structure isapplied to the measurement in this research. Yet, the application on a real impinging sheetis not implemented.</p>
103

Impact of data dependencies for real-time high performance computing.

Hossain, M. Alamgir, Kabir, U., Tokhi, M.O. January 2002 (has links)
No / This paper presents an investigation into the impact of data dependencies in real-time high performance sequential and parallel processing. An adaptive active vibration control algorithm is considered to demonstrate the impact of data dependencies in real-time computing. The algorithm is analysed in detail to explore the inherent data dependencies. To minimize the impact of data dependencies, an investigation into reducing memory access in sequential computing is provided. The impact of data dependencies with various interconnections is also explored and demonstrated in real-time parallel processing through a set of experiments.
104

Impact of algorithm design in implementing real-time active control systems

Hossain, M. Alamgir, Tokhi, M.O., Dahal, Keshav P. January 2004 (has links)
This paper presents an investigation into the impact of algorithm design for real-time active control systems. An active vibration control (AVC) algorithm for flexible beam systems is employed to demonstrate the critical design impact for real-time control applications. The AVC algorithm is analyzed, designed in various forms and implemented to explore the impact. Finally, a comparative real-time computing performance of the algorithms is presented and discussed to demonstrate the merits of different design mechanisms through a set of experiments.
105

Vibration Suppression using Orthogonal Eigenstructure Control

Rastgaar Aagaah, Mohammad 20 August 2008 (has links)
A novel control method called orthogonal eigenstructure control is developed for active vibration cancellation in structures. Orthogonal eigenstructure control is a feedback control method applicable to multi-input multi-output linear systems. While the available control design methodologies offer a large and complex design space of options that can often overwhelm a designer, this control method offers a significant simplification of the design task while still allowing some experience-based design freedom. For example, eigenstructure assignment methods need definition of a desired eigenvector for the closed-loop system. The controller designer may also be required to do pole placement. Considering the fact that there are no one-to-one relationships between the elements of the closed-loop eigenvectors of a model and the states of the system, this effort could be inefficient for many practical systems. Moreover, for large-scale systems, defining or shaping the eigenstructures become a relatively difficult task. Orthogonal eigenstructure control is a state feedback-like control law that is relatively easy to design and implement to multiple-input multiple-output systems. It allows control engineers to achieve good performing designs even with little design experience, while the existing methods are highly dependent on designer experience. Orthogonal eigenstructure control is introduced and extended to be applicable to linear systems regardless of the number and location of the actuators and sensors. Also, the concept of progressive application of the proposed control method for increasing robustness is described. Finally, the result of application of the control method for vibration cancellation of a test plate is investigated through experiments for tonal and wideband disturbances. The results show a significant reduction of vibrations using the orthogonal eigenstructure control with relative ease in finding the control gain matrix. / Ph. D.
106

Nonlinear Control and Robust Observer Design for Marine Vehicles

Kim, Myung-Hyun 05 December 2000 (has links)
A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from the slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. A direct adaptive neural network controller is developed for a model of an underwater vehicle. Radial basis neural network and multilayer neural network are used in the closed-loop to approximate the nonlinear vehicle dynamics. No prior off-line training phase and no explicit knowledge of the structure of the plant are required, and this scheme exploits the advantages of both neural network control and adaptive control. A control law and a stable on-line adaptive law are derived using the Lyapunov theory, and the convergence of the tracking error to zero and the boundedness of signals are guaranteed. Comparison of the results with different neural network architectures is made, and performance of the controller is demonstrated by computer simulations. The sliding mode observer is used to eliminate observation spillovers in the vibration control of flexible structures. It is common to build a state feedback controller and a state estimator based on the mathematical model of the system with a finite number of vibration modes, but this may cause control and observation spillover due to the residual (uncontrolled) modes. The performance of a sliding mode observer is compared with that of a conventional Kalman filter in order to demonstrate robustness and disturbance decoupling characteristics. Simulation and experimental results using the sliding mode observer are presented for the active vibration control of a cantilever beam using smart materials. / Ph. D.
107

Simultaneous Energy Harvesting and Vibration Control via Piezoelectric Materials

Wang, Ya 20 March 2012 (has links)
This work examines a novel concept and design of simultaneous energy harvesting and vibration control on the same host structure. The motivating application is a multifunctional composite sandwich wing spar for a small Unmanned Aerial Vehicle (UAV) with the goal of providing self-contained gust alleviation. The basic idea is that the wing itself is able to harvest energy from the ambient vibrations along with available sunlight during normal flight. If the wing experiences any strong wind gust, it will sense the increased vibration levels and provide vibration control to maintain its stability. This work holds promise for improving performance of small UAVs in wind gusts. The proposed multifunctional wing spar integrates a flexible solar cell array, flexible piezoelectric wafers, a thin film battery and an electronic module into a composite sandwich structure. The basic design factors are discussed for a beam-like multifunctional wing spar with load-bearing energy harvesting, strain sensing and self-controlling functions. Three-point bending tests are performed on the composite sandwich structure for bending strength analysis and bending stiffness prediction under a given safety factor. Additional design factors such as the configuration, location and actuation type of each piezoelectric transducer are investigated for optimal power generation. The equivalent electromechanical representations of a multifunctional wing spar is derived theoretically, simulated numerically and validated experimentally. Special attention is given to the development of a reduced energy control (REC) law, aiming to minimize the actuation energy and the dissipated heat. The REC law integrates a nonlinear switching algorithm with a positive strain feedback controller, and is represented by a positive feedback operation amplifier (op-amp) and a voltage buffer op-amp for each mode. Experimental results exhibit that the use of nonlinear REC law requires 67.3 % less power than a conventional nonlinear controller to have the same settling time under free vibrations. Nonlinearity in the electromechanical coupling coefficient of the piezoelectric transducer is also observed, arising from the piezoelectric hysteresis in the constitutive equations coupling the strain field and the electric field. If a constant and voltage-independent electromechanical coupling coefficient is assumed, this nonlinearity results in considerable discrepancies between experimental measurements and simulation results. The voltage-dependent coupling coefficient function is identified experimentally, and a real time adaptive control algorithm is developed to account for the nonlinear coupling behavior, allowing for more accurate numerical simulations. Experimental validations build upon recent advances in harvester, sensor and actuator technology that have resulted in thin, light-weight multilayered composite sandwich wing spars. These multifunctional wing spars are designed and validated to able to alleviate wind gust of small UAVs using the harvested energy. Experimental results are presented for cantilever wing spars with micro-fiber composite transducers controlled by reduced energy controllers with a focus on two vibration modes. A reduction of 11dB and 7dB is obtained for the first and the second mode using the harvested ambient energy. This work demonstrates the use of reduced energy control laws for solving gust alleviation problems in small UAVs, provides the experimental verification details, and focuses on applications to autonomous light-weight aerospace systems. / Ph. D.
108

Enhancement of the Dynamic Buckling Load and Analysis of Active Constrained Layer Damping with Extension and Shear Mode Piezoceramic Actuators

Geng, Twzen-Shang 05 June 2002 (has links)
We consider geometric and material nonlinearities when studying numerically, by the finite element method, transient three-dimensional electroelastic deformations of a graphite-epoxy square plate sandwiched between two piezoceramic (PZT) layers. Points on the four edges of the bottom surface of the plate are restrained from moving vertically. The two opposite edges of the plate are loaded by equal in-plane compressive loads that increase linearly with time and the other two edges are kept traction free. The plate material is modeled as orthotropic and neoHookean. For the transversely isotropic PZT the second Piola-Kirchhoff stress tensor and the electric displacement are expressed as second degree polynomials in the Green-St. Venant strain tensor and the electric field. Both direct and converse piezoelectric effects are accounted for in the PZT. The plate is taken to have buckled when its centroidal deflection equals three times the plate thickness. The dynamic buckling load for the plate is found to strongly depend upon the rate of rise of the applied tractions. With the maximum electric field limited to 1kV/mm, the buckling load is enhanced by 18.3% when the PZT elements are activated. For a peak electric field of 30kV/mm, the buckling load increased by 58.5%. When more than 60% of the surface area of the top and the bottom surfaces of the plate are covered by the PZT layers, then square PZT elements placed symmetrically about the plate centroid provide a larger enhancement in the buckling load than rectangular shaped or cross-shaped PZT elements. An increase in the plate thickness relative to that of the PZT actuators decreases the effectiveness of the PZT in enhancing the buckling load for the plate. The finite element code was modified to also analyze, in time domain, transient deformations of a viscoelastic material for which the second Piola-Kirchhoff stress tensor is expressed as a linear functional of the strain history of the Green-St. Venant strain tensor. It was used to analyze three-dimensional deformations of a thick laminated plate with layers made of aluminum, a viscoelastic material and a PZT. The following two arrangements of layers are considered. In one case a central PZT layer is surrounded on both sides by viscoelastic layers and aluminum layers are on the outside surfaces. The PZT is poled in the longitudinal direction and an electric field is applied in the thickness direction. Thus shearing deformations of the PZT layer are dominant. In the second arrangement, the aluminum layer is in the middle and the PZT layers are on the outside. The poling direction and the electric field are in the thickness direction; thus its extensional deformations are predominant. Three indices are used to gauge the damping of motion of plate particles, and the effectiveness of PZT actuators in enhancing this damping. It is found that the optimum thickness of the viscoelastic layers for maximum total energy dissipation is the same for each set-up. Also, the total thickness of the PZT layers which results in the maximum value of one of these indices of energy dissipation is the same for the two set-ups. Both arrangements give the largest value of this index for a plate of aspect ratio 10. Buckling behavior of a sandwich plate containing a soft core is also studied. The effects of the ratio of the elastic moduli of the outer layers to those of the core, and of the core thickness on the buckling load are analyzed. The top and the bottom layers are connected by very stiff blocks on two opposite edges where in-plane compressive time-dependent tractions are applied. / Ph. D.
109

Novel Lightweight Noise and Vibration Control Treatments for Marine Structures

Harne, Ryan 03 September 2009 (has links)
This thesis presents the development and testing of distributed vibration absorber designs with specific application to heavy plates for the reduction of vibration and sound radiation. Two particular designs, already under investigation for use on thin panels or composite materials, were adapted to passively reduce broadband vibration and noise from large and heavy plates. These absorbers are referred to as Distributed Vibration Absorbers [DVAs] and Heterogeneous [HG] Blankets. Numerical models were developed, based on the theory of sound propagation through layered media and the vibration of plates, to simulate the performance of such absorbers for a variety of applications and media characteristics. The new absorber designs were then tested on a large, marine-type plate (4 feet by 2 feet by 1/4 inch) and showed both broadband noise and vibration control from 60 Hz to 5 kHz. DVAs could reduce the vibrating plate resonance magnitudes on the order of 15 dB at their tuning frequencies while providing overall vibration reduction of 5 dB or greater at higher frequencies. HG blankets were also capable of reducing plate resonance vibration up to 15 dB at their tuning frequencies and produced overall vibration reduction of 5 dB at higher frequencies. These absorbers are entirely passive, i.e. requiring no controller or prior modal testing of the structure, were placed randomly during testing, and are designed to contribute less than 10% additional mass to the structure, making them a robust vibration and noise control solution. / Master of Science
110

Design, Modeling and Control of Vibration Systems with Electromagnetic Energy Harvesters and their Application to Vehicle Suspensions

Liu, Yilun 07 November 2016 (has links)
Instead of dissipating vibration energy into heat waste via viscous damping elements, this dissertation proposes an innovative vibration control method which can simultaneously mitigate vibration and harvest the associated vibration energy using electromagnetic energy harvesters. This dissertation shows that the electromagnetic energy harvester can work as a controllable damper as well as an energy harvester. The semi-active control of a linear electromagnetic energy harvester, for improvement of suspension performance, has been experimentally implemented in a scaled-down quarter-car suspension system. While improving performance, power produced by the harvester can be harvested through energy harvesting circuits. This dissertation also proposes a mechanical-motion-rectifier(MMR)-based electromagnetic energy harvester using a ball-screw mechanism and two one-way clutches for the application of replacing the viscous damper in vehicle suspensions. Compared to commercial linear harvesters, the proposed design is able to provide large damping forces and increase power-dissipation density, making it suitable to vehicle suspensions. In addition, the proposed MMR-based harvester can convert reciprocating vibration into unidirectional rotation of the generator. This feature significantly increases energy-harvesting efficiency by enabling the generator to rotate at a relatively steady speed during irregular vibrations and improves the system reliability by reducing impact forces among transmission gears. Extensive theoretical and experimental analysis have been conducted to characterize the proposed MMR-based energy harvester. The coupled dynamics of the suspension system with the MMR-based energy harvester are also explored and optimized. Furthermore, a new control algorithm is proposed to control the MMR-based energy harvester considering its unique dynamics induced by the one-way clutches. The results show that the controlled proposed electromagnetic energy harvester can possibly improve ride comfort of vehicles over conventional oil dampers and simultaneously harvest the associated vibration energy. / Ph. D.

Page generated in 0.1163 seconds